• Title/Summary/Keyword: OFDM systems

Search Result 896, Processing Time 0.029 seconds

Performance of OFDM wireless communication system for modulation techniques (변조방식에 따른 OFDM 무선통신 시스템의 성능평가)

  • 김창선;김성곤;변건식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.741-744
    • /
    • 2001
  • In this study, a OFDM mode, unlike traditional single carrier mode, is that a great number of carrier in multi-channel environment is transmitted by modulating objective Data parallel in order to execute high speed Data translation and make frequency orthogonal to offer high spectrum efficiency. As a result, this method is adopted to a variety of fields and is being actively studied. In this papers, the efficiency of OFDM wireless-communication systems is evaluated by modulation methods through computer simulation. M-PSK and M-QAM are used as modulation methods. The simulation is executed in a real channel and a virtual channel included multi-path, AWGN, Peak Power clipping, Frame Start Time Error As a result of simulation, it is confirmed that M-QAM method is superior to M-PSK in OFDM systems in terms of the transmission methods.

  • PDF

Low-complexity Carrier Frequency Offset Estimation using A Novel Region Boundary for OFDM-based WLAN Systems (영역 경계 기법을 사용한 OFDM기반 WLAN 시스템의 반송파 주파수 오프셋 추정 기법)

  • Cho, Jong-Min;Kim, Jin-Sang;Cho, Won-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.254-259
    • /
    • 2010
  • In this paper, we propose a low-complexity carrier frequency offset (CFO) estimation algorithm for OFDM based wireless LAN, IEEE 802.11a. The complexity of the arctangent operation to calculate the argument of auto-correlation for CFO estimation is reduced by a novel range pointer method. The proposed algorithm estimates fine CFO value first and then based on the fine CFO value, simple criteria is used for the boundary decision of integer CFO estimation. The simulation results show that the performance of the proposed algorithm is slightly better than the conventional method while the computational complexity is reduced by 50%. Furthermore, the proposed method can be easily implemented for the low complex next generation MIMO-OFDM based WLAN systems.

A Study on Low Power 32-point FFT Algorithm for OFDM Maritime Communication (OFDM 해상통신방식용 저전력 32-point FFT 알고리즘에 관한 연구)

  • Cho, Seung-Il;Lee, Kwang-Hee;Jo, Ha-Na;Kim, Keun-O;Lee, Chung-Hoon;Park, Gye-Kack;Cho, Ju-Phil;Cha, Jae-Sang;Kim, Seung-Kweon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.251-254
    • /
    • 2008
  • 유비쿼터스 네트워크의 실현을 위한 4세대 통신방식의 유력한 후보로 부상하는 OFDM (Orthogonal Frequency Division Multiplexing) 통신방식이 육상에 주목받고 있으며, 고속 데이터 전송을 위한 무선랜의 표준기술로 확정되어 있다. 해상 통신의 경우에서도 OFDM 통신방식은 단파대역을 이용한 데이터 전송방식으로 제안되고 있으며, ITU (International Telecommunication Union)는 해상통신에서 32-point FFT를 사용하도록 권고하고 있다. 해상 통신에서는 해양사고 및 조난 시에도 통신이 이루어져야 하는 한계상황을 고려하면, OFDM 통신방식의 중요 디바이스인 FFT는 저전력으로 동작되어야 한다. 따라서 본 논문에서는 OFDM 방식의 중요 디바이스인 32-point FFT를 저전력으로 동작시키기 위해 radix-2와 radix-4를 이용하여 저전력 32-point FFT 알고리즘을 제안한다. 최적화된 설계로 32-point FFT를 저전력 동작이 가능하도록 설계하였으며, 제안한 알고리즘은 VHDL로 구현하고 FPGA Spartan3 board에 장착하여 Matlab의 이론값과 비교, 검증하였다. 제안된 32-point FFT는 해상통신에서의 OFDM 적용을 위한 선도기술로 유용할 것이다.

  • PDF

Performance Analysis of OFDM for Wireless Communication Applications (이동 무선 통신 응용을 위한 OFDM의 성능 해석)

  • 김창선;김성곤;변건식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.2
    • /
    • pp.251-256
    • /
    • 2001
  • In this study, a OFDM mode, unlike traditional single carrier mode, is that a great number of carrier in multi-channel environment is transmitted by modulating objective Data parallel in order to execute high speed Data translation and make frequency orthogonal to offer high spectrum efficiency As a result, this method is adopted to a variety of fields and is being actively studied. In this papers, the efficiency of OFDM wireless-communication systems is evaluated by modulation methods through computer simulation. M-PSK and M-QAM are used as modulation methods. The simulation is executed in a real channel and a virtual channel included multi-path, AWGN, Peak Power clipping, Frame Start Time Error. As a result of simulation, it is confirmed that M-OAM method is superior to M-PSK in OFDM systems in terms of the transmission methods.

  • PDF

Sparse Channel Estimation Based on Combined Measurements in OFDM Systems (OFDM 시스템에서 측정 벡터 결합을 이용한 채널 추정 방법)

  • Min, Byeongcheon;Park, Daeyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • We investigate compressive sensing techniques to estimate sparse channel in Orthogonal Frequency Division Multiplexing(OFDM) systems. In the case of large channel delay spread, compressive sensing may not be applicable because it is affected by length of measurement vectors. In this paper, we increase length of measurement vector adding pilot information to OFDM data block. The increased measurement vector improves probability of finding path delay set and Mean Squared Error(MSE) performance. Simulation results show that signal recovery performance of a proposed scheme is better than conventional schemes.

A Parallel Combinatory OFDM System with Weighted Phase Subcarriers

  • Zheng, Hui;Shrestha, Robin;Hwang, Jae-Ho;Kim, Jae-Mong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.322-340
    • /
    • 2012
  • Orthogonal Frequency Division Multiplexing (OFDM) is usually regarded as a spectral efficient multicarrier modulation technique, yet it suffers from a high peak-to-average power ratio (PAPR) problem. Among all the existing PAPR reduction techniques in OFDM systems, side information based PAPR reduction techniques such as partial transmit sequence (PTS) and selective mapping (SLM) schemes, have attracted the most attention. However, the transmission of side information results in somewhat spectral loss and this does not significantly improve the bit error rate (BER) performance. Parallel combinatory (PC) OFDM yields higher spectral efficiency (SE) and better BER performance on Gaussian channels,while is a little but not obvious PAPR improvement over the ordinary OFDM system. This investigation aimed to design a 'perfect' OFDM system. We introduce the side information to rotate the subcarrier phases of our novel PC-OFDM system structure, and call this new system the SIPC(Side information based Parallel Combinatory)-OFDM system. The proposed system achieves better PAPR and SE performance. In addition, considering the tradeoff of system parameters, the proposed system also has the properties of a higher BER.

The Effects of Time Domain Windowing and Detection Ordering on Successive Interference Cancellation in OFDM Systems over Doubly Selective Channels (이중 선택적 채널 OFDM 시스템에서 시간 영역 윈도우와 검출 순서가 순차적 간섭 제거에 미치는 영향)

  • Lim, Dong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.635-641
    • /
    • 2010
  • Time-varying channel characteristics in OFDM systems over doubly selective channels cause inter-carrier interferences(ICI) in the frequency domain. Time domain windowing gives rise to restriction on the bandwidth of the frequency domain channel matrix and makes it possible to approximate the OFDM system as a simplified linear input-output model. When successive interference cancellation based on linear MMSE estimation is employed for channel equalization in OFDM systems, symbol detection ordering produces considerable effects on overall system performances. In this paper, we show the reduction of the residual ICI by time domain windowing and the resultant performance improvements, and investigate the effects of SINR- and CSEP-based symbol detection ordering on the performance of successive interference cancellation.

A Study on PAPR reduction in OFDM WPAN system using Millimeter Wave (Millimeter Wave를 이용하는 OFDM WPAN 시스템에서 PAPR 감소에 관한연구)

  • Kim, Wan-Tae;Yoo, Sun-Yong;Cho, Sung-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.2
    • /
    • pp.139-145
    • /
    • 2008
  • There has been lots of studies on communication systems using millimeter wave recently in many countries, specially in newly assigned 57GHz ~ 64GHz ISM band. Among those studies, IEEE 802.15.3c standard proposes OFDM (Orthogonal Frequency Division Multiplexing) systems for high data rate transmission support. But OFDM method has the PAPR (peak-to-Average Power Radio) problem The PAPR problem is to decline the performance of the transmission system due to signals distorted severely when passing through nonlinear components such as ADC/DAC and power amplifiers. In order to solve the problem of P APR, this paper suggests SSC (Sine Soft Clipping) and analyzes the PAPR, CCDF, PSD, BER by applying SAW(Surface Acoustic Wave) filter and power amplifiers to IEEE 802.15.3.c OFDM WPAN systems.

  • PDF

A Channel Estimation Technique Based on Pilot Tones for OFDM Systems with a Symbol Timing Offset (시간 동기 옵셋을 갖는 OFDM 시스템을 위한 파일럿 톤 기반의 채널 추정 기법)

  • Park, Chang-Hwan;Kim, Jae-Kwon;Lee, Hee-Soo;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.992-1003
    • /
    • 2007
  • In this paper, a channel estimation technique based on pilot tones, which does not degrade channel estimation performance even with the existence of symbol timing offset (STO) in OFDM systems, is proposed. The proposed technique performs channel estimation by interpolating channels with respect to amplitude and phase with a minimum computational complexity, differently from the conventional interpolation techniques. The proposed technique requires neither the estimation of fine STO in advance nor trigonometric operation for phase interpolation, signifying a significant reduction in computational complexity. Since the performance of the proposed technique does not depend on the STO present in OFDM systems. It can be directly applied to the following areas in OFDM-based communication system: elimination of fine STO estimation step in the synchronization procedure, elimination of STO estimation step in multiuser uplink, and channel estimation in multi-hop relay system. It is verified by computer simulation that the proposed technique can improve the performance of channel estimation significantly in the presence of STOs, compared with previous channel estimation techniques based on pilot tones.

Symbol Based Rate Adaptation in Coded MIMO-OFDM Systems (심볼 기반의 적응 변조 기법을 이용한 채널 부호화된 MIMO-OFDM 시스템)

  • Sung, Chang-Kyung;Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1A
    • /
    • pp.50-58
    • /
    • 2008
  • The use of space-division multiple access(SDMA) in the downlink of multiuser multi-input/multi-output(MIMO) wireless transmission systems can provide substantial gains in system throughput. When the channel state information(CSI) is available at the transmitter, a considerable performance improvement can be attained by adapting the transmission rates to the reported CSI. In addition, to combat frequency selective fadings in wideband wireless channels, bit-interleaved coded OFDM(BIC-OFDM) modulation schemes are employed to provide reliable packet delivery by utilizing frequency diversity through channel coding. In this paper, we propose an adaptive modulation and coding(AMC) scheme combined with an opportunistic scheduling technique for the MIMO BIC-OFDM with bandwidth-limited feedback channels. The proposed scheme enhances the link performance by exploiting both the frequency diversity and the multiuser diversity. To reduce the feedback information, the proposed AMC scheme employs rate adaptation methods based on an OFDM symbol rather than on the whole subchannels. Simulation results show that the proposed scheme exhibits a substantial performance gain with a reasonable complexity over single antenna systems.