• Title/Summary/Keyword: OFDM radar

Search Result 6, Processing Time 0.017 seconds

OFDM MIMO radar waveform design for targets identification

  • Bai, Ting;Zheng, Nae;Chen, Song
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.592-603
    • /
    • 2018
  • In order to obtain better target identification performance, an efficient waveform design method with high range resolution and low sidelobe level for orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) radar is proposed in this paper. First, the wideband CP-based OFDM signal is transmitted on each antenna to guarantee large bandwidth and high range resolution. Next, a complex orthogonal design (COD) is utilized to achieve code domain orthogonality among antennas, so that the spatial diversity can be obtained in MIMO radar, and only the range sidelobe on the first antenna needs suppressing. Furthermore, sidelobe suppression is expressed as an optimization problem. The integrated sidelobe level (ISL) is adopted to construct the objective function, which is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The numerical results demonstrate the superiority in performance (high resolution, strict orthogonality, and low sidelobe level) of the proposed method compared to existing algorithms.

Deep learning-based target distance and velocity estimation technique for OFDM radars (OFDM 레이다를 위한 딥러닝 기반 표적의 거리 및 속도 추정 기법)

  • Choi, Jae-Woong;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.104-113
    • /
    • 2022
  • In this paper, we propose deep learning-based target distance and velocity estimation technique for OFDM radar systems. In the proposed technique, the 2D periodogram is obtained via 2D fast Fourier transform (FFT) from the reflected signal after removing the modulation effect. The periodogram is the input to the conventional and proposed estimators. The peak of the 2D periodogram represents the target, and the constant false alarm rate (CFAR) algorithm is the most popular conventional technique for the target's distance and speed estimation. In contrast, the proposed method is designed using the multiple output convolutional neural network (CNN). Unlike the conventional CFAR, the proposed estimator is easier to use because it does not require any additional information such as noise power. According to the simulation results, the proposed CNN improves the mean square error (MSE) by more than 5 times compared with the conventional CFAR, and the proposed estimator becomes more accurate as the number of transmitted OFDM symbols increases.

Reduction of sidelobe levels in multicarrier radar signals via the fusion of hill patterns and geometric progression

  • Raghavendra, Channapatna Gopalkrishna;Prakash, Raghu Srivatsa Marasandra;Panemangalore, Vignesh Nayak
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.650-659
    • /
    • 2021
  • Multi-carrier waveforms have several advantages over single-carrier waveforms for radar communication. Employing multi-carrier complementary phase-coded (MCPC) waveforms in radar applications has recently attracted significant attention. MCPC radar signals take advantage of orthogonal frequency division multiplexing properties, and several authors have explored the use of MCPC signals and the difficulties associated with their implementation. The sidelobe level and peak-to-mean-envelope-power ratio (PMEPR) are the key issues that must be addressed to improve the performance of radar signals. We propose a scheme that applies pattern-based scaling and geometric progression methods to enhance sidelobe and PMEPR levels in MCPC radar signals. Numerical results demonstrate the improvement of sidelobe and PMEPR levels in the proposed scheme. Additionally, autocorrelations are obtained and analyzed by applying the proposed scheme in extensive simulation experiments.

Multiple Noise OFDM Waveforms for Wide Swath MIMO SAR (광역 MIMO SAR 영상 획득을 위한 다중 잡음 OFDM 파형 활용 연구)

  • Moon, Minjung;Song, Kyungmin;Lee, Wookyung;Ryu, Sang-Burm;Lee, Hyeon-Cheol;Lee, Sang-Gyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.464-472
    • /
    • 2018
  • Future spaceborne satellite synthetic aperture radar(SAR) system is expected to acquire high-resolution images over wide swath areas. Conventional SAR systems suffer from ambiguity problems in both azimuth and range directions that lead to image quality degradation. Recently, multiple input multiple output(MIMO) SAR techniques having multiple orthogonal waveforms are proposed to overcome the conventional ambiguity problems in wide-swath imaging modes. In this paper, noisy orthogonal frequency division multiplex(OFDM) waveforms are developed to reduce the ambiguity problems and suppress the image quality degradation. SAR simulations are performed to evaluate the performance of the proposed technique for wide-swath SAR imaging.

A study on the Adaptive Subcarrier Assignment techniques for interference suppression in OFDM System (OFDM 시스템에서 Adaptive Subcarrier Assignment 기법을 통한 간섭 경감에 관한 연구)

  • 조성구;박용완;최정희;이동학;정원석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8A
    • /
    • pp.889-897
    • /
    • 2004
  • In this Paper, we propose the algorithm to provide stable communication in OFDM system under the highly interfered environment by the same/different systems which use same bandwidth or other jamming signal, i.e., radar signal. The proposed Adaptive Subcarrier Assignment(ASA) method first estimates the received power of each subcarrier in the block or fin or OFDM receiver. Then we estimate the threshold level which is the average power of the transmitted OFDM signal with AWGN. The highly interfered subcarriers, which are greater powers than the specified threshold level, are rejected in the next transmission and the only non-interfered subcarriers are selected as the next transmission. This algorithm provides stable communication in any OFDM systems without changing the physical layer under the highly interfered communication environment. We estimated the status of the subcarriers based on the bandwidth and power of the jamming signal and showed the performance of the proposed algorithm by the simulation.

A Novel Signaling Method using Multiple Chirps in UWB Radio (UWB 대역에서 Multiple Chirp 을 이용한 새로운 시그널링 방법)

  • Kim, Yeong-Sam;Yoon, Sang-Hun;Chong, Jong-Wha;Lee, Kyung-Kuk
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.127-128
    • /
    • 2006
  • In this paper, we propose a novel signaling method using chirp signals in UWB radio with satisfaction of FCC regulation. Chirp signals have been used in many ranging systems such as radar because of its good correlation properties. Because it is important to use broader signal bandwidth in order to get higher precision of the ranging, according to the Cramer-Rao Lower Bound, UWB radio is extremely good as the ranging systems. But, it is very difficult to apply existing chirp signals to UWB, because FCC regulates that the systems operating in UWB radio must occupy signal bandwidth more than 500MHz on the condition of stopping the frequency sweeping. So, we propose multiple chirp signals which can satisfy the regulation of FCC while maintaining chirp signal's properties. The multiple chirp signals which are composed of the sub-chirps modulated by sub-carriers can expand the signal bandwidth with the same principle of OFDM systems. The simulation results show that the BER performance of the proposed multiple chirp signals is identical to that of conventional OFDM when it is applied to data communication, and that the correlation properties of the proposed signals are almost the same with properties as those of single chirp signals whose sweeping bandwidth is the same value with the proposed one.

  • PDF