• Title/Summary/Keyword: ODQ

Search Result 77, Processing Time 0.025 seconds

ROLE OF NITRIC OXIDE AND DISTRIBUTION OF NITRIC OXIDE SYNTHASE IN THE GUSTATORY SYSTEM (미각계에서 산화질소의 역할과 산화질소 합성효소의 분포)

  • Kim, Young-Jae;Kim, Won-Jae;Ryu, Sun-Youl
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.3
    • /
    • pp.262-269
    • /
    • 2000
  • 말초 미각계 및 중추 미각계에서 산화질소의 역할과 그것의 합성효소의 존재는 아직 규명되지 않고 있다. 본 연구는 말초미각계인혀와 미각구심성신경 그리고 중추미각계인 뇌간고속핵에서 산화질소 합성효소의 분포 및 면역조직화학 방법과 고삭신경의 extracellular recording 뇌간고속핵 절편 whole cell patch 방법으로 조사하였다. 신경성 산화질소 합성효소는 혀의 전방에 위치한 심상유두와 유곽유두에 약하게 존재하였으며 미뢰주위와 결체조직에 존재하는 신경섬유 및 혀의 상피층에 풍부하게 존재하였다. 혀에 소금물을 가하여 증가된 고삭신경의 복합전위는 산화질소 유리제인 SNP에 의해 증가되었으며 내인성 산화질소 합성효소 억제제인 L-NAME와 soluble guanylate cyclase 억제제인 ODQ에 의해 억제되었다. 문측 연수에 존재한 문측 고속핵과 진전핵에서 nNOS가 풍부하게 존재하였다. 문측 고속핵의 신경들은 안정막전위가 $-48{\pm}52mV$였고 활동전위의 크기는 $74{\pm}11mV$였다. SNP에 의해 뇌간 고속핵 신경들이 탈분극되었으며 current clamp하였을 때 활동전압의 빈도가 증가하였다. 또한 SNP에 의한 문측 고속핵의 탈분극과 활동전압 빈도증가는 L-NAME와 ODQ에 의해 감소되었다. 이상의 실험결과는 산화질소 합성효소가 혀와 뇌간고속핵에 존재하며 여기서 유리된 내인성 산화질소가 말초성 및 중추성 미각기전에 관여하리라 사료된다.

  • PDF

Study on the Mechanism of Vascular Relaxation of Ethanol Extract of Persicaria Perfoliata H. Gross (하백초 에탄올 추출물의 혈관이완 기전에 대한 연구)

  • Kim, Hye-Yoom;Choi, Byung-Sun;Choi, Eun-Hee;Cui, Hao-Zhen;Kang, Dae-Gill;Lee, Ho-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.389-396
    • /
    • 2009
  • The ethanol extract of Persicaria perfoliata (EPP) induced relaxation of the phenylephrine-precontracted aorta in a dose-dependent manner, which was abolished by removal of functional endothelium. Pretreatment of the aortic tissues with NG-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4}-oxadiazole-[4,3-${\alpha}$)-quinixalin-1-one (ODQ) inhibited the relaxation induced by EPP. However, EPP-induced relaxation was not blocked by pretreatment with indomethacine, glibenclamide, tetraethylammonium (TEA), atropine, or propranolol. Incubation of endothelium-intact thoracic aortic ring with EPP increased the production of cGMP, which was also blocked by pretreatment with L-NAME or ODQ. These results suggest that EPP dilates vascular smooth muscle via endothelium-dependent NO/cGMP signaling.

Efficacy of Lumbar Segmental Stabilization Exercises and Breathing Exercises on Segmental Stabilization in Lumbar Instability Patients

  • Yang, Sung Rae;Kim, Young Mi;Park, Sun Ja;Kim, Cheol Yong
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.5
    • /
    • pp.234-240
    • /
    • 2017
  • Purpose: The aim of this study was to determine the effectiveness of breathing exercises and lumbar segmental exercises on the segmental stability of patients with chronic back pain. Methods: Fifty-nine patients, who suffered from chronic low back pain, were enrolled in this examination. They were divided randomly into three groups: experiment group 1 underwent breathing and segmental stabilization exercises (n=20), experiment group 2 experienced segmental stabilization exercises (n=20), and the control group was given the modality treatment (n=19). The measurements were assessed through an Oswestry disability questionnaire (ODQ), as well as a lumbar segmental instability test (LSIT). Results: The ODQ results for experimental groups 1 and 2 were similar (p<0.05), both before and after six weeks of exercise, but different among the three groups (p>0.05). The differences in segmental instability of each of the three groups were similar (p<0.05), and also similar among the three groups (p<0.05). Conclusion: These findings suggest that lumbar segmental stabilization exercises are efficient in increasing the segmental stability and alleviating pain in patients with chronic back pain. Additional studies on this subject will be needed to improve the clinical applications in the future.

Vasorelaxant effect of fluoxetine in isolated rat aorta (흰쥐 대동맥에서 fluoxetine의 혈관 이완 효과)

  • Kim, Shang-Jin;Kang, Hyung-sub;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.4
    • /
    • pp.515-522
    • /
    • 2004
  • The vasorelaxant effect of serotonin reuptake inhibitor fluoxetine was investigated in rat isolated thoracic aorta. Fluoxetine induced a concentration-dependent relaxation in aorta precontracted with phenylephrine (PE) and KCl. These relaxations were suppressed by removal of the endothelium (-E) or pretreatment of nitric oxide synthase inhibitors, N(G)-nitro-L-arginine (L-NNA) and N(omega)-nitro-Larginine methyl ester (L-NAME), guanylate cyclase inhibitors, methylene blue (MB) and 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ), and $Ca^{2+}$ channel blockers, nifedipine and verapamil, in PE-precontracted +E rings. However, fluoxetine-induced relaxations were not suppressed by pretreatment of $K^{+}$ channel blockers, tetrabutylammonium and glibenclamide, in PE-precontracted endothelium intact (+E) rings. The fluoxetine-induced relaxations were not suppressed by removal of the endothelium or pretreatment of LNNA and MB in KCl-precontracted +E rings. Also, fluoxetine inhibited PE-induced sustained contraction in +E rings. These inhibitory effects of fluoxetine on contractions could be reversed by removal of the endothelium or pretreatment of L-NNA, L-NAME, MB, ODQ, nifedipine and verapamil, but not by pretreatment of etrabutylammonium and glibenclamide. These findings suggest that the vasorelaxant effect of fluoxetine is modulated by intracellular $Ca^{2+}$ with an involvement of endothelial NO-cGMP pathway and also may be related to the inhibition of $Ca^{2+}$ entry through voltage-gated channel.

Modulation of Outward Potassium Currents by Nitric Oxide in Longitudinal Smooth Muscle Cells of Guinea-pig Ileum

  • Kwon, Seong-Chun;Rim, Se-Joong;Kang, Bok-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.225-232
    • /
    • 1998
  • To investigate the possible involvement of outward potassium ($K^+$) currents in nitric oxide-induced relaxation in intestinal smooth muscle, we used whole-cell patch clamp technique in freshly dispersed guinea-pig ileum longitudinal smooth muscle cells. When cells were held at -60 mV and depolarized from -40 mV to -50 mV in 10 mV increments, sustained outward $K^+$ currents were evoked. The outward $K^+$ currents were markedly increased by the addition of 10 ${\mu}M$ sodium nitroprusside (SNP). 10 ${\mu}M$ S-nitroso-N-acetylpenicillamine (SNAP) and 1 mM 8-Bromo-cyclic GMP (8-Br-cGMP) also showed a similar effect to that of SNP. 1 mM tetraethylammonium (TEA) significantly reduced depolarization-activated outward $K^+$ currents. SNP-enhanced outward $K^+$ currents were blocked by the application of TEA. High EGTA containing pipette solution (10 mM) reduced the control currents and also inhibited the SNP-enhanced outward $K^+$ currents. 5 mM 4-aminopyridine (4-AP) significantly reduced the control currents but showed no effect on SNP-enhanced outward $K^+$ currents. 0.3 ${\mu}M$ apamin and 10 ${\mu}M$ glibenclamide showed no effect on SNP-enhanced outward $K^+$ currents. 10 ${\mu}M$ 1H-[1,2,4]oxadiazolo [4,3-a]quinoxaline-1-one (ODQ), a specific inhibitor of soluble guanylate cyclase, significantly blocked SNP-enhanced $K^+$ currents. We conclude that NO donors activate the $Ca^{2+}-activated$ $K^+$ channels in guinea-pig ileal smooth muscle via activation of guanylate cyclase.

  • PDF

Antinociceptive Effect of the Intrathecal Phosphodiesterase Inhibitor, Zaprinast, in a Rat Formalin Test

  • Heo, Burn Young;Kim, Chang Mo;Jeong, Sung Tae;Kim, Seok Jai;Choi, Jeong II;Yoon, Myung Ha
    • The Korean Journal of Pain
    • /
    • v.18 no.2
    • /
    • pp.99-106
    • /
    • 2005
  • Background: Cyclic guanosine monophosphate (cGMP) and opioid receptors are involved in the modulation of nociception. Although the opioid receptors agonists are active in pain, the effect of an phospodiesterase inhibitor (zaprinast) for increasing the level of cGMP has not been thoroughly investigated at the spinal level. This study examined the effects of intrathecal zaprinast and morphine in a nociceptive test and we also examined the nature of the pharmacological interaction after the coadministration of zaprinast with morphine. The role of the nitric oxide (NO)-cGMP-potassium channel pathway on the effect of zaprinast was further clarified. Methods: Catheters were inserted into the intrathecal space of male SD rats. For the induction of pain, $50{\mu}l$ of 5% formalin solution was applied to the hindpaw. Isobolographic analysis was used for the evaluation of the drug interaction between zaprinast and morphine. Furthermore, NO synthase inhibitor ($_L-NMMA$), guanylyl cyclase inhibitor (ODQ) or a potassium channel blocker (glibenclamide) were intrathecally administered to verify the involvement of the NO-cGMP- potassium channel pathway on the antinociception effect of zaprinast. Results: Both zaprinast and morphine produced an antinociceptive effect during phase 1 and phase 2 in the formalin test. Isobolographic analysis revealed a synergistic interaction after the intrathecal administration of the zaprinast-morphine mixture in both phases. Intrathecal $_L-NMMA$, ODQ and glibenclamide did not reverse the antinociception of zaprinast in either phase. Conclusions: These results suggest that zaprinast, morphine and the mixture of the two drugs are effective against acute pain and they facilitated pain state at the spinal level. Thus, the spinal combination of zaprinast with morphine may be useful for the management of pain. However, the NO-sensitive cGMP-potassium channel pathway did not contribute to the antinocieptive mechanism of zaprinast in the spinal cord.

Evidence for the Participation of ATP-sensitive Potassium Channels in the Antinociceptive Effect of Curcumin

  • Paz-Campos, Marco Antonio De;Chavez-Pina, Aracely Evangelina;Ortiz, Mario I;Castaneda-Hernandez, Gilberto
    • The Korean Journal of Pain
    • /
    • v.25 no.4
    • /
    • pp.221-227
    • /
    • 2012
  • Background: It has been reported that curcumin, the main active compound of Curcuma longa, also known as turmeric, exhibits antinociceptive properties. The aim of this study was to examine the participation of ATP-sensitive potassium channels ($K_{ATP}$ channels) and, in particular, that of the L-arginine-nitric oxide-cyclic GMP-$K_{ATP}$ channel pathway, in the antinociceptive effect of curcumin. Methods: Pain was induced by the intraplantar injection of 1% formalin in the right hind paw of Wistar rats. Formalin-induced flinching behavior was interpreted as an expression of nociception. The antinociceptive effect of oral curcumin was explored in the presence and absence of local pretreatment with L-NAME, an inhibitor of nitric oxide synthase, ODQ, an inhibitor of soluble guanylyl cyclase, and glibenclamide, a blocker of $K_{ATP}$ channels. Results: Oral curcumin produced a dose-dependent antinociceptive effect in the 1% formalin test. Curcumin-induced antinociception was not altered by local L-NAME or ODQ, but was significantly impaired by glibenclamide. Conclusions: Our results confirm that curcumin is an effective antinociceptive agent. Curcumin-induced antinociception appears to involve the participation of $K_{ATP}$ channels at the peripheral level, as local injection of glibenclamide prevented its effect. Activation of $K_{ATP}$ channels, however, does not occur by activation of the L-arginine-nitric oxide-cGMP-$K_{ATP}$ channel pathway.

The Effect of Carbon Monoxide on L-type Calcium Channel Currents in Human Intestinal Smooth Muscle Cells

  • Lim, In-Ja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.357-362
    • /
    • 2003
  • Carbon monoxide (CO) is low molecular weight oxide gas that is endogenously produced under physiological conditions and interacts with another gas, nitric oxide (NO), to act as a gastrointestinal messenger. The aim of this study was to determine the effects of exogenous CO on L-type calcium channel currents of human jejunal circular smooth muscle cells. Cells were voltage clamped with 10 mM barium ($Ba^{2+}$) as the charge carrier, and CO was directly applied into the bath to avoid perfusion induced effects on the recorded currents. 0.2% CO was increased barium current ($I_{Ba}$) by $15{\pm}2$% ($mean{\pm}S.E.$, p<0.01, n=11) in the cells. To determine if the effects of CO on barium current were mediated through the cGMP pathway, cells were pretreated with 1-H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, $10{mu}M$), a soluble guanylyl cyclase inhibitor, and exogenous CO (0.2%) had no effect on barium currents in the presence of ODQ ($2{\pm}1$% increase, n=6, p>0.05). CO mediates inhibitory neurotransmission through the nitric oxide pathway. Therefore, to determine if the effects of CO on L-calcium channels were also mediated through NO, cells were incubated with $N^G-nitro-L-arginine$ (L-NNA, 1 mM), a nitric oxide synthase inhibitor. After L-NNA pretreatment, 0.2 % CO did not increase barium current ($4{\pm}2$% increase, n=6, p>0.05). NO donor, SNAP ($20{\mu}M$) increased barium current by $13{\pm}2$% (n=6, p<0.05) in human jejunal smooth muscle cells. These data suggest that CO activates L-type calcium channels through NO/cGMP dependant mechanism.

Differential role of endothelium in hawthorn fruit extract-induced relaxation of rat cerebral, coronary, carotid, and aorta

  • Chan, Hoi Yun;Chen, Zhen-Yu;Yao, Xiaoqiang;Lau, Chi-Wai;Zhang, ZeSeng;Ho, Walter Kwok Keung;Huang, Yu
    • Advances in Traditional Medicine
    • /
    • v.2 no.2
    • /
    • pp.87-93
    • /
    • 2002
  • The present study was aimed to examine the role of endothelium in the relaxant effect of hawthorn fruit extract of Crataegus pinnatifida in four different types of rat arteries, posterior cerebral communicating artery, right descending coronary artery, common carotid artery, and aorta. In $9,11-dideoxy-11{\alpha}$, $9{\alpha}-epoxy-methanoprostaglandin$ $F_{2{\alpha}}$ (U46619)-preconstricted arterial rings except for aorta, the extract produced endothelium-independent relaxations with similar potency. This relaxation was unaffected by pretreatment with $100\;{\mu}M\;N^G-nitro-L-arginine$ methylester (L-NAME, the nitric oxide synthase inhibitor), $3\;{\mu}M$ 1H-[l,2,4]oxadiazolo$[4,2-{\alpha}]$quinoxalin-1-one (ODQ, the guanylate cyclase inhibitor), or $10\;{\mu}M$ indomethacin (the cyclooxygenase inhibitor). Putative $K^+$ channel blockers (charybdotoxin plus apamin or glibenclamide) did not affect the extract-induced relaxation in cerebral or coronary artery rings. In contrast, in rat aortic rings the extract produced significantly smaller relaxant response in endothelium-denuded rings than that in endothelium-intact rings. Pretreatment with L-NAME or ODQ abolished the extractinduced endothelium-dependent aortic relaxation, whilst indomethacin $(3\;{\mu}M)$ had no effect. The present results indicate that hawthorn fruit extract possesses a vasorelaxing effect in cerebral, coronary and carotid arteries and this effect is independent of the presence of a functional endothelium. However, the extract-induced endothelium-dependent relaxation in rat aorta was mediated through endothelial nitric oxide and cyclic GMP-dependent mechanisms, suggesting that active components in the extract may act on endothelium to stimulate release of nitric oxide in large conduit arteries of the rats.

Effect of Lophatherum gracile on the mechanism of vasorelaxation in thoracic aorta (담죽엽 추출물의 혈관이완 기전에 대한 연구)

  • Kim, Hye-Yoom;Li, Xiang;Lee, Yun-Jeong;Seo, Hwan-Ho;Cho, Nam-Geun;Kang, Dae-Gill;Lee, Ho-Sub
    • Herbal Formula Science
    • /
    • v.17 no.2
    • /
    • pp.175-186
    • /
    • 2009
  • The vasorelaxant effect of an extract of Lophatherum gracile Brongn (ELB) and its possible action mechanism were ascertained in aortic tissues isolated from rats. ELB relaxed endothelium-intact thoracic aorta in a dose-dependent manner. However, the induced vascular relaxation was abolished by removal in endothelium of the thoracic aorta. Pretreatment of endothelium-intact vascular tissues with $N^G$-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4]-oxadiazole-[4,3-$\alpha$]-quinoxalin-1-one (ODQ) significantly inhibited vascular relaxation induced by ELB. Moreover, ELB significantly increased cGMP production in aortic tissues, which was blocked by pretreatment with L-NAME or ODQ. The vasorelaxant effect of ELB was attenuated by tetraethylammonium (TEA), and glibenclamide. ELB-induced vasorelaxation was not blocked by atropine, propranolol, indomethacin, verapamil, and diltiazem. Taken together, the present study demonstrates that ELB dilates vascular smooth muscle via an endothelium-dependent NO-cGMP signaling pathway, which may be at least in part related with the function of $K^+$ channels.

  • PDF