• Title/Summary/Keyword: OClO

Search Result 141, Processing Time 0.025 seconds

Synthesis, Characterization, and Thermal Degradation of Oligo-2-[(pyridin-4-yl-)methyleneamino]pyridine-3-ol and Oligomer-Metal Complexes (올리고피리디닐메틸렌아미노피리딘올과 금속 착화물의 합성, 분석 및 열분해 특성 연구)

  • Kaya, Ismet;Gul, Murat
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.295-304
    • /
    • 2008
  • This study examined the oxidative polycondensation reaction of 2-[(pyridin-4-yl-) methyleneamino] pyridine-3-ol (2-PMAP) using air $O_2$ and NaOCl oxidants at various temperatures and times in aqueous alkaline and acidic media. Under these reactions, the optimum reaction conditions using air $O_2$ and NaOCl oxidants were determined for 2-PMAP. The number-average molecular weight ($M_n$), weight average molecular weight ($M_w$), and polydispersity index (PDI) values of O-2-PMAP synthesized in aqueous alkaline media were found to be 960, 1230, and $1.281\;g\;mol^{-1}$ using NaOCl, and 1030, 1520, and $1.476\;g\;mol^{-1}$ using air $O_2$, respectively. At the optimum reaction conditions, the yield of O-2-PMAP in aqueous alkaline media was 92.50% and 85.70% for air $O_2$ and NaOCl oxidants, respectively. The yield of O-2-PMAP in aqueous acidic media was 88.5% and 88.0% for NaOCl and air $O_2$ oxidants, respectively. O-2-PMAP was characterized by $^1H-$, $^{13}C$-NMR, FT-IR, UV-vis, SEC, and elemental analysis. TGA-DTA analysis revealed O-2-PMAP and its oligomer metal complex compounds, such as $Co^{+2}$, $Ni^{+2}$, and $Cu^{+2}$, to be stable against thermal decomposition and their weight losses at $1000^{\circ}C$ were found to be 73.0, 58.0, 53.5%, and 50.0%, respectively. In addition, the antimicrobial activities of the monomer and oligomer were tested against E. Coli (ATCC 25922), E. Faecelis (ATCC 29212), P. Auroginasa (ATCC 27853), and S. Aureus (ATCC 25923).

Formation Mechanism of Ultrafine $TiO_2$ Powders from Aqueous $TiOCl_2$ Solution by Homogeneous Precipitation Process at Low Temperature (저온 균일침전법으로 $TiOCl_2$ 수용액에서 얻은 $TiO_2$ 초미분체의 형성기구)

  • 김선재;이희균;박순동;전치중;이창규;김흥회;이은구
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.473-478
    • /
    • 2000
  • The TiO2 powder with the values of the large specific surface area more than 150$m^2$/g has been prepared with the homogeneous precipitation process below 5$0^{\circ}C$ and its formation mechanism was investigated using the SEM, TEM and Raman Spectroscopy. With the spontaneous hydrolysis of aqueous TiOCl2 solutions, all the precipitates were fully and homogeneously crystallized with the rutile TiO2 phase simply by heating, which as transformed to the anatase TiO2 phase as increasing the addition of SO42- ions to the aqueous TiOCl2 solution. The precipitates were formed with spherical secondary particles which consisted of acicular, spherical and mixed primary particles corresponding to the rutile, anatase and mixed phases, respectively. It can be thought that the formation and phase determination of crystalline TiO2 powders even at ambient temperature would be related with the existence of the capillary force. This force might be varied depending on the shape change of the primary particles.

  • PDF

Synthesis of Nanosized Brookite-type Titanium Dioxide Powder from aqueous TiOCl2 Solution by homogeneous Precipitation Reaction (TiOCl2 수용액의 균일침전반응에 의한 나노크기의 브루카이트상 TiO2 분말제조)

  • Lee, Jeong-Hoon;Yang, Yeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.12 no.12
    • /
    • pp.947-954
    • /
    • 2002
  • HCl concentration and reaction time are the decisive factors in determining the structure of precipitates in the process of synthesis of $TiO_2$ particles from aqueous $TiOCl_2$ solution by precipitation and the volumetric proportion of brookite phase in $TiO_2$ particles can be controlled by these two factors. As reaction rate increases with increase of reaction temperature, the reaction time, at which maximum volumetric proportion of brookite phase in $TiO_2$ particles was obtained, was reduced. The brookite was transformed directly to rutile phase with only increase of reaction time. And precipitation was delayed with increase of HCl concentration because the amount of $H_2$O, which is necessary source of oxygen for conversion of $Ti^{+4}$ to $TiO_2$, was relatively reduced with increase of that. Brookite in the mixture phase powder was finally transformed to rutile phase via anatase through heat-treatment.

Optimization of Electrolytic Oxidant OCl- Production for Malodorous VOCs Removal (악취성 VOCs 제거를 위한 전해 산화제 OCl-의 생산 최적화)

  • Yang, Woo Young;Lee, Tae Ho;Ryu, Hee Wook
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.152-159
    • /
    • 2021
  • Volatile organic compounds (VOCs) occur in indoor and outdoor industrial and urban areas and cause environmental problems. Malodorous VOCs, along with aesthetic discomfort, can have a serious effect on the human body. Compared with the existing method of reducing malodorous VOCs, a wet scrubbing method using an electrolytic oxidant has the advantage of reducing pollutants and regenerating oxidants. This study investigated the optimal conditions for producing OCl-, a chlorine-oxidant. Experiments were conducted by changing the type of anode and cathode electrode, the type of electrolyte, the concentration of electrolytes, and the current density. With Ti/IrO2 as the anode electrode and Ti as the cathode electrode, OClproduction was highest and most stable. Although OCl- production was similar with the use of KCl or NaCl, NaCl is preferable because it is cheap and easy to obtain. The effect of NaCl concentration and current density was examined, and the OCl- production rate and concentration were highest at 0.75 M NaCl and 0.03 A cm-2. However, considering the cost of electric power, OCl- production under the conditions of 1.00 M NaCl and 0.01 A cm-2 was most effective among the conditions examined. It is desirable to produce OCl- by adjusting the current density in accordance with the concentration and characteristics of pollutants.

Synthesis of Mullite-Zirconia Composites from Kaolin by Gel Coating (Gel Coating법에 의한 Kaolin으로부터 Mullite-Zirconia 복합체의 합성)

  • 김세훈;김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.497-504
    • /
    • 2000
  • In this study, mullite-zirconia comosite was fabricated by adding ZrOCl2.8H2O using of boehmite gel coating to Hadong kaolin (pink A grade) in order to enhance strength of the mullite specimens. The influence of ZrOCl2.8H2O content and fireing temperature on the crystall phase, microstructure, bulk density, strength of the specimens was investigated. Mullite-zirconia composite was produced in the process of coating zirconia to mullite powder synthesized thereafter and mixing simultaneously of starting materials with boehmite-zirconia gel. Maximum strength with in this study was 251 sintered at 1$600^{\circ}C$ for 2h. Bulk density and strength of the composite with zirconia coated mullite was higher than simultaneous on mixture of starting materials.

  • PDF

ZrOCl2.8H2O as an Efficient Catalyst for the Three-Component Synthesis of Triazoloindazoles and Indazolophthalazines

  • Tavakoli, Hamid Reza;Moosavi, Sayed Mojtaba;Bazgir, Ayoob
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.4
    • /
    • pp.472-475
    • /
    • 2013
  • An efficient and environmentally benign protocol for the three-component synthesis of triazoloindazoles and indazolophthalazines via condensation of dimedone, aldehydes and urazole or phthalhydrazide catalyzed by $ZrOCl_2.8H_2O$ as an inexpensive and eco-friendly catalyst with high catalytic activity under solvent-free conditions is reported. This protocol provides a new and improved method for obtaining triazoloindazoles and indazolophthalazines in terms of good yields, simple experimental procedure and short reaction time.

Preparation of Titanyl Chlorde (鹽化티타닐 製造에 關한 硏究)

  • Chyun, Byong-Doo;Shin, Yoon-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.15-17
    • /
    • 1957
  • 1. Preparation of Titanium tetrachloride; The following precesses were strictly followed as the preliminary step to obtain pure $TiOCl_2$, titanyl chloride; First, pure Titanium Oxide mixed with carbon is rolled into pills. After drying up perfectly, these pills are heated at 900∼1000${\circ}C$. And then the pills are subjected to the flow of $Cl_2$ gas in a quartz tube heated to 900-1000${\circ}C$. Thus Titanium tetrachloride is obtained. 2. Preparation of $TiOCl_2$ ; Yellowish trobrown solution is made by pouring 80 g of conc. HCl (sp.gr. 1.19) to 45 gr of Titanium tetrachloride (approx. 2 times of theoretical amount). Then this solution is kept settled for 5-days in a desiccator filled with phosphorous pentoxide at room temperature. As the colorless amorphous solid thus obtained is washed with aceton, 36.5 g of the pure salt are obtained. 3. Determination of composition. The analysis of the sample taken from the deposit desiccated gives the following data; (A) Qualitative analysis; a) $Ti(OH)_4$ is precipitated by adding NaOH in water solution of the salt. b) Adding $AgNO_3$ solution, the water solution of the salt gives white precipitate of AgCl. c) When acid and $H_2O_2$ are added, the solution turns its color to redish brown (This proves that $TiO^{++}$ was converted into $TiO^{++}$ by oxidation of $H_2O_2$. (B) Quantitative analysis; a) $Ti(OH)_4$ precipitated by $10{\%}$ NaOH isalitatsubjected consecutively to the filtration and ignition in porcelain crucible at approx. 1000${\circ}C$. , then $TiO_2$ thus formed is weighed and calculated into Ti content. b) Chlorine involved in water solution of the salt is determined by Vorhardt method. Result: The values obtained from previous analysis, devied by their atomic weight gives the following composition: Ti : Cl = 1 : 2 Therefore $TiOCl_2$ should be given as its molecular formula. 4. Summary. When $TiCl_4$ is additated into conc. HCl, $TiO^{++}$ formed exists as a stable form, and forms $TiOCl_2$. However $TiOCl_2$ is unstable to heating. When the temperature is raised to $65{\circ}C$the decomposition of the solution is accelerated, and gives $TiO_2$ aq. $TiOCl_2$ in addition is highly hygroscopic.

  • PDF

Comparison of sodium permanganate and sodium hypochlorite on algae-containing water: algae cell integrity and byproduct formation (조류가 발생한 수질에 과망간산나트륨과 차아염소산나트륨이 세포 손상도 및 부산물 발생에 미치는 영향 비교)

  • Yang, Boram;Hong, Seok Won;Choi, Jae-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.5
    • /
    • pp.249-260
    • /
    • 2022
  • The effect of permanganate oxidation was investigated as water treatment strategy with a focus on comparing the reaction characteristics of NaOCl and sodium permanganate (NaMnO4) in algae (Monoraphidium sp., Micractinium inermum, Microcystis aeruginosa)-contained water. Flow cytometry explained that chlorine exposure easily damaged algae cells. Damaged algae cells release intracellular organic matter, which increases the concentration of organic matter in the water, which is higher than by NaMnO4. The oxidation reaction resulted in the release of toxin (microcystin-LR, MC-LR) in water, and the reaction of algal organic matter with NaOCl resulted in trihalomethanes (THMs) concentration increase. The oxidation results by NaMnO4 significantly improved the concentration reduction of THMs and MC-LR. Therefore, this study suggests that NaMnO4 is effective as a pre-oxidant for reducing algae damage and byproducts in water treatment process.

Influence of the Molar Ratio of Cl-total:Ti+4 on the Crystalline Structure in Preparation of TiO2 from Aqueous TiOCl2 Solution by Homogeneous Precipitation Method (균일침전법에 의한 이산화티타늄 제조공정에서 TiOCl2 수용액의 Cl-total:Ti+4의 몰 비율이 TiO2 결정구조에 미치는 영향)

  • Lee, Jeong Hoon;Yang, Yeong Seok
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.785-789
    • /
    • 2005
  • $TiO_2$ powders with rutile and brookite phases were synthesized through homogeneous precipitation of the aqueous $TiOCl_2$ solution, prepared from $TiCl_4$ and HCl solution, and their properties were characterized. Based on the analytical results appropriate molar ratios of ${Cl^-}_{total}:Ti^{+4}$ in precipitating solution for synthesis of pure rutile phase and a mixture of rutile and brookite phases were proposed. The volumetric proportion of brookite increased with increasing HCl concentration under a typical condition obtaining mixed phase of rutile and brookite. The brookite phase in the mixture was transformed to anatase phase by heat treatment at about $800^{\circ}C{\sim}850^{\circ}C$, and finally converted to rutile phase at $1000^{\circ}C$.