As the 4th Industrial Revolution emerged as a key to improving national competitiveness, OCR technology, one of the major technologies in the 4th industry is in the spotlight. Since characters in various images contain a lot of information, OCR technology for recognizing these characters has evolved into technology used in many industries. In this paper, trends in OCR technology were identified and predicted using thesis data published in 'RISS' and patent data by International patent classification (IPC) under the theme of Optical character recognition (OCR). For patent data 20,000 patents related to OCR technology from 2002 to 2020 were used as data, and 432 papers from 2012 to 2022 were used as data. Through time-series analysis, each patent data and thesis data were investigated since when OCR technology has developed, and various keyword analysis predicted which technology will be used in the future. Finally, the direction of future OCR technology development was presented through network association analysis with patent data and thesis data.
광학 문자 인식(Optical Character Recognition, OCR)은 이미지 내의 문자를 인식하여 디지털 포맷(Digital Format)의 텍스트로 변환하는 기술이다. 딥러닝(Deep Learning) 기반의 OCR이 높은 인식률을 보여줌에 따라 대량의 기록 자료를 보유한 많은 산업 분야에서 OCR을 활용하고 있다. 특히, 의료 산업 분야는 의료 서비스 향상을 위해 딥러닝 기반의 OCR을 적극 도입하였다. 본 논문에서는 딥러닝 기반 OCR 엔진(Engine) 및 의료 데이터에 특화된 OCR의 동향을 살펴보고, 의료 OCR의 발전 방향에 대해 제시한다. 현재의 의료 OCR은 검출한 문자 데이터를 자연어 처리(Natural Language Processing, NLP)하여 인식률을 개선하였다. 그러나, 정형화되지 않은 손글씨(Handwriting)나 변형된 문자에서는 여전히 인식 정확도에 한계를 보였다. 의료 데이터의 데이터베이스(Database)화, 이미지 전처리(Pre-processing), 특화된 자연어 처리를 통해 더욱 고도화된 의료 OCR을 발전시키는 것이 필요하다.
OCR(광학문자인식)은 컴퓨터 분야에 적용된 지 20년의 역사가 되었고, 자동차 번호판 인식을 통한 주차관리 등 여러 분야에서 응용되어왔다. 본 OCR 기반 스마트 가계부 앱 개발연구에서도 이 기술을 이용하였다. 스마트폰 기반 가계부에서 구매 내역을 수기로 일일이 기입하는 불편을 개선하고자 카메라로 영수증을 촬영해서 구입 목록을 자동으로 정리할 수 있도록 하였다. 이 과정에서 기존의 OCR 기술만으로 영수증의 이미지 문자를 판독하면 인식률이 떨어져서 영상처리기술을 이용하여 영수증 사진의 대비를 조절하는 방법으로 영수증의 문자 인식률을 89%에서 92.5%로 향상하였다.
O2O 상점 모델은 온/오프라인의 경계를 허물어 고객에게 큰 편의성을 제공하는 플랫폼이다. 이러한 플랫폼을 효과적으로 운영하기 위해서는 소상공인들이 필요한 정보를 디지털 형태로 제공해야 한다. 특히, 한글 메뉴판을 디지털화하는 과정이 수동으로 진행될 경우 여러 문제점을 일으킬 수 있으며, OCR 기술 사용 시 한글의 인식 정확도가 낮아 오류 인식의 가능성이 높다. 이에 본 논문에서는 한글 메뉴판의 자동 인식을 위해 대표적인 OCR 모델인 EasyOCR을 기반으로 하되, 한글 문자 인식의 낮은 정확도를 개선하고자 한다. 제안하는 모델은 VGG와 ResNet의 구조적 장점을 통합하고, 어텐션 메커니즘을 도입하여 한글 문자의 인식 성능을 크게 향상시키도록 설계한다. 실험 결과, 제안하는 모델은 EasyOCR에 비해 Accuracy 기준 약 3.5%, Confidence Score와 Normalized Edit Distance 기준 약 1%의 인식 정확도 향상을 보였다. 따라서, 제안한 방법이 기존 문제를 효과적으로 해결할 수 있음을 입증한다.
한글 OCR 성능을 높이기 위해 딥러닝 모델을 활용하여 문자인식 부분을 개선하고자 하였다. 본 논문에서는 폰트와 사전데이터를 사용해 딥러닝 모델 학습을 위한 한글 문장 이미지 데이터를 직접 생성해보고 이를 활용해서 한글 문장의 OCR 성능을 높일 다양한 모델 조합들에 대한 실험을 진행했다. 딥러닝 모델은 STR(Scene Text Recognition) 구조를 사용해 변환, 추출, 시퀀스, 예측 모듈 각 24가지 모델 조합을 구성했다. 딥러닝 모델을 활용한 OCR 실험 결과 한글 문장에 적합한 모델조합은 변환 모듈을 사용하고 시퀀스와 예측 모듈에는 BiLSTM과 어텐션을 사용한 모델조합이 다른 모델 조합에 비해 높은 성능을 보였다. 해당 논문에서는 이전 한글 OCR 연구와 비교해 적용 범위를 글자 단위에서 문장 단위로 확장하였고 실제 문서 이미지에서 자주 발견되는 유형의 데이터를 사용해 애플리케이션 적용 가능성을 높이고자 한 부분에 의의가 있다.
OCR(Optical Character Recognition)의 오류를 줄이기 위해 본 논문에서는 교정 어휘 쌍의 혼동 행렬(confusion matrix)과 나이브 베이즈 분류기($na{\ddot{i}}ve$ Bayes classifier)를 이용한 철자 교정 시스템을 제안한다. 본 시스템에서는 철자 오류 중 한글에 대한 철자 오류만을 교정하였다. 실험에 사용된 말뭉치는 한국어 원시 말뭉치와 OCR 출력 말뭉치, OCR 정답 말뭉치이다. 한국어 원시 말뭉치로부터 자소 단위의 언어 모델(language model)과 교정 후보 검색을 위한 접두사 말뭉치를 구축했고, OCR 출력 말뭉치와 OCR 정답 말뭉치로부터 교정 어휘 쌍을 추출하고, 자소 단위로 분해하여 혼동 행렬을 만들고, 이를 이용하여 오류 모델(error model)을 구축했다. 접두사 말뭉치를 이용해서 교정 후보를 찾고 나이브 베이즈 분류기를 통해 확률이 높은 교정 후보 n개를 제시하였다. 후보 n개 내에 정답 어절이 있다면 교정을 성공하였다고 판단했고, 그 결과 약 97.73%의 인식률을 가지는 OCR에서, 3개의 교정 후보를 제시하였을 때, 약 0.28% 향상된 98.01%의 인식률을 보였다. 이는 한글에 대한 오류를 교정했을 때이며, 향후 특수 문자와 숫자 등을 복합적으로 처리하여 교정을 시도한다면 더 나은 결과를 보여줄 것이라 기대한다.
각국의 항만들은 중심항만으로 자리매김하기 위해 첨단기술을 항만건설, 하역장비, 운영시스템 등에 적용함으로써 항만 효율성 및 생산성 향상에 박차를 가하고 있다. 최근에는 RFID(radio frequency identification)와 OCR(optical character recognition) 기술의 등장으로 자동화 게이트시스템에 대한 관심이 높아지고 있다. 국내에는 RFID 기술과 OCR 기술을 적용하여 컨테이너 터미널 게이트의 효율성 및 생산성을 향상시키고자 하는 연구과제들이 수행되고 있으나, 100%에 미치지 못하는 인식률 때문에 현실에 적용하기에 부족한 부분이 있다. 이에 본 연구에서는 RFID와 OCR기술을 동시에 적용해 이들이 가진 장점을 활용한 RFID/OCR 기반의 자동화 게이트시스템을 개발하고, 이를 컨테이너 터미널 게이트에 적영하여 컨테이너 터미널 게이트의 인식업무를 개선시킬 수 있는 효율적인 게이트 운영 시스템을 제시하고자 한다.
본 논문에서는 카메라형 OCR (Optical Character Reader) 기술을 이용해 오프라인 중고서점의 효율적 장서관리 시스템을 구축하기 위한 디지털 데이터화 관리시스템 방안을 제안한다. OCR은 광학적으로 인식할 수 있는 문자를 컴퓨터가 읽을 수 있도록 하는 기술이다. 원리적으로 문자 한 개를 수십 개의 모눈으로 분할해 특정한 모눈의 흑백 또는 자획형상 특징에 의해 문자를 판독한다. 이 논문에서는 OCR 기술을 활용함으로써 디지털 데이터화의 효과는 물론 적용 환경의 개선효과를 기대해 볼 수 있는 오프라인 중고서점 시장을 목표로 했다. 오프라인 중고서점에서 보유하고 있는 장서의 디지털 데이터화는 기업형 중고서점과의 경쟁에 있어서도 생존을 위해 필요한 요소이다. 카메라형 OCR 기술을 활용한 장서 디지털 데이터화는 오프라인 중고서점 판매자가 도서재고 검색 및 판매 관리 효율을 높이도록 도와줄 뿐 아니라, 도서판매 유형, 소비자 분석과 수요 예측을 가능하게 한다. 또한 소비자에게 오프라인 중고서점에서 보유하고 있는 희귀 장서와 중고서적들을 검색해 구입할 수 있는 편의를 제공할 것이다. 오프라인 중고서점 판매를 촉진하고 활성화시킨다면 출판의 선순환적 구조를 만드는 데 기여할 것으로 예상된다.
Cho, Hyung Ik;Sun, Chang Guk;Kim, Jae Hyun;Kim, Dong Soo
Geomechanics and Engineering
/
제15권4호
/
pp.987-995
/
2018
In this study, a relationship between small-strain shear modulus ($G_{max}$) and overconsolidation ratio (OCR) based on shear wave velocity ($V_S$) measurement was established to identify the stress history of centrifuge model ground. A centrifuge test was conducted in various centrifugal acceleration levels including loading and unloading sequences to cause various stress histories on centrifuge model ground. The $V_S$ and vertical effective stress were measured at each level of acceleration. Then, a sensitivity analysis was conducted using testing data to ensure the suitability of OCR function for the tested cohesionless soils and found that OCR can be estimated based on $V_S$ measurements irrespective of normally-consolidated or overconsolidated loading conditions. Finally, the developed $G_{max}$-OCR relationship was applied to centrifuge models constructed and tested under various induced stress-history conditions. Through a series of tests, it was concluded that the induced stress history on centrifuge model by compaction, g-level variation, and past overburden load can be analysed quantitatively, and it is convinced that the OCR evaluation technique will contribute to better interpret the centrifuge test results.
Optical character recognition (OCR) has been studied for decades because it is very useful in a variety of places. Nowadays, OCR's performance has improved significantly due to outstanding deep learning technology. Thus, there is an increasing demand for commercial-grade but affordable OCR systems. We have developed a low-cost, high-performance OCR system for the industry with the cheapest embedded developer kit that supports GPU acceleration. To achieve high accuracy for industrial use on limited computing resources, we chose a state-of-the-art text recognition algorithm that uses an end-to-end deep learning network as a baseline model. The model was then improved by replacing the feature extraction network with the best one suited to our conditions. Among the various candidate networks, EfficientNet-B3 has shown the best performance: excellent recognition accuracy with relatively low memory consumption. Besides, we have optimized the model written in TensorFlow's Python API using TensorFlow-TensorRT integration and TensorFlow's C++ API, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.