• Title/Summary/Keyword: OC4

Search Result 611, Processing Time 0.026 seconds

Seasonal Variations of OC and EC in PM10, PM2.5 and PM1.0 at Gosan Superstation on Jeju Island (제주도 고산 PM10, PM2.5, PM1.0 중 OC와 EC의 계절별 변화 특성)

  • Lim, Sae-Hee;Lee, Mee-Hye;Kang, Kyeong-Sik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.567-580
    • /
    • 2010
  • Organic carbon (OC) and elemental carbon (EC) concentrations were determined for $PM_{10}$, $PM_{2.5}$ and $PM_{1.0}$ aerosols particles collected at Gosan Superstation on Jeju Island from August 2007 to September 2008. Aerosols were collected on quartz filters for 24 hours and then OC and EC were analyzed by TOR/IMPROVED method. Mean concentrations of OC and EC were $4.66\;{\mu}g/m^3$ and $1.69\;{\mu}g/m^3$ for $PM_{10}$, $3.95\;{\mu}g/m^3$ and $1.69\;{\mu}g/m^3$ for $PM_{2.5}$, and $3.16\;{\mu}g/m^3$ and $1.42\;{\mu}g/m^3$ for $PM_{1.0}$, respectively. The concentrations of OC and EC comprised 16.4% and 6.0% of $PM_{10}$, 22.9% and 9.8% of $PM_{2.5}$, and 23.0% and 10.0% of $PM_{1.0}$. OC and EC showed a clear seasonal variation with the highest in winter and the lowest in summer. The correlations between the two were also the best during the winter ($R^2$=0.87, 0.94, and 0.95 for $PM_{10}$, $PM_{2.5}$ and $PM_{1.0}$). The ratio of OC/EC exhibited the maximum (7.24) during an Asian dust event due to an increase of OC, which was possibly derived from soil. The mass fraction of both OC and EC was the highest in fall. When OC and EC concentrations were highly elevated, EC1 (the first EC fraction determined at $550^{\circ}C$) and pyrolyzed OC (POC) were dominant subcomponents in winter and OC3 (the third OC fraction determined at $450^{\circ}C$) and POC in spring.

Improvement of Fouling Resistance with Reverse Osmosis Membrane Using Multi-layer Silane-Epoxy Surface Modification (실란-에폭시 다층 표면개질을 통한 역삼투막의 내오염성 향상)

  • Kwon, Sei;Lee, Yong Taek
    • Membrane Journal
    • /
    • v.25 no.4
    • /
    • pp.332-342
    • /
    • 2015
  • In this study, to solve the major problem of reverse osmosis (RO) membrane, surface of reverse osmosis membrane was modified by silane-epoxy multi layer. Octyltrimethoxysilane (OcTES) was polymerized to membrane surface via cross-linking by Sol-gel method. n = 8 alkylgroup of OcTES formed the branch structure by self assembly. And for improve fouling resistance of RO membrane, Ether group of ethylene glycol diglycidyl ether (EGDE) was given to improve hydrophilicity of RO membrane surface by ring-opening. To analyze structure of RO membrane surface with FE-TEM and AFM. Membrane surface of the ridge and valley structure and the bridge structure was confirmed due to the multi-layer surface modification of OcTES and EGDE. And through the increase of the roughness, the branch structure was formed well on membrane surface. Through the XPS analysis was identified chemical structure of membrane surface. And confirmed that the hydrophilic surface modification is given to the surface of the film through a Contact angle analysis. In optimization of EGDE surface modification condition, was suitable 0.5 wt% EGDE concentraion and $70^{\circ}C$ ring-opening temperature. In result of fouling resistance test and MFI is SUL-H10, $PA-OcTES_{1.0}$, $PA-OcTES_{1.0}-EGDE_{0.5}$ 68.7, 60.4, 5.4 ($10E-8hr/mL^2$), multi-layer surface modified membrane improved fouling resistance.

Organizational Climate Effects on the Relationship Between Emotional Labor and Turnover Intention in Korean Firefighters

  • Ryu, Hye-Yoon;Hyun, Dae-Sung;Jeung, Da-Yee;Kim, Chang-Soo;Chang, Sei-Jin
    • Safety and Health at Work
    • /
    • v.11 no.4
    • /
    • pp.479-484
    • /
    • 2020
  • Background: The purpose of this study is to examine the combined effects of organizational climate (OC) with emotional labor (EL) on turnover intention in Korean firefighters. Methods: The data were obtained from the study Firefighters Research: Enhancement of Safety and Health. A total of 4,860 firefighters whose main duty was providing "emergency medical aid" were included. To examine the effects of OC on the relationships between five subscales of EL and turnover intention, four groups were created using various combinations of OC ("good" vs. "bad") and EL ("normal" vs. "risk"): (1) "good" and "normal" (Group I), (2) "bad" and "normal" (Group II), (3) "good" and "risk" (Group III), and (4) "bad" and "risk" (Group IV). Multivariate logistic regression analyses were performed to estimate the risk of turnover intention for the combinations of OC and EL. Results: The results showed turnover intention was significantly higher in the group with "bad" OC (17.7%) than in that with "good" OC (7.6%). Combined effects of OC and EL on turnover intention were found in all five subscales with the exception of Group I for emotional demands and regulation. Groups II, III, and IV were more likely to experience risks of turnover intention than Group I (p for trend <0.001). Conclusions: A positive and cooperative OC plays a role in decreasing the risk of turnover intention and in attenuating the negative effects of EL on turnover intention in firefighters.

The Characteristics and Seasonal Variations of OC and EC for PM2.5 in Seoul Metropolitan Area in 2014 (서울지역의 PM2.5 중 OC와 EC의 특성 및 계절적 변화에 관한 연구)

  • Park, Jong Sung;Song, In Ho;Park, Seung Myung;Shin, Hyejung;Hong, Youdeog
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.6
    • /
    • pp.578-592
    • /
    • 2015
  • To investigate characteristics and seasonal variations of carbonaceous species for $PM_{2.5}$ in Seoul metropolitan area, Korea, we measured organic carbon (OC) and elemental carbon (EC) from January 2014 to December 2014 using a semi-continuous OC/EC Analyzer (Model-4, Sunset Lab.). Mean concentrations of OC and EC were estimated $4.1{\pm}2.7{\mu}g/m^3$ and $1.6{\pm}1.0{\mu}g/m^3$, respectively. The annual averaged OC/EC ratio was $2.9{\pm}2.7$. Concentrations of OC and EC comprised 13% and 5% of $PM_{2.5}$ and the mass fraction of both was the highest in fall. OC and EC showed similar trend in seasonal variations. Concentrations of those showed a clear seasonal variation with the highest in winter and the lowest in summer. The correlations between the two were the best during the winter ($r^2=0.88$). As results of carbonaceous species analysis, the dominant factor in view of fine particle ($PM_{2.5}$) is primary emission source such as mobile, fossil fuel combustion during commute time(08:00~10:00 or 17:00~21:00) and winter season. Continuous monitoring of atmospheric carbonaceous species is essential to provide the science-based data to policy-maker establishing the air quality improvement policy.

Distribution Characteristics and Background Air Classification of PM2.5 OC and EC in Summer Monsoon Season at the Anmyeondo Global Atmosphere Watch (GAW) Regional Station (안면도 기후변화감시소의 여름철 PM2.5 OC와 EC 분포 특성 및 배경대기 구분)

  • Ham, Jeeyoung;Lee, Meehye;Ryoo, Sang-Boom;Lee, Young-Gon
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.429-438
    • /
    • 2019
  • Organic carbon (OC) and elemental carbon (EC) in PM2.5 were measured with Sunset Laboratory Model-5 Semi-Continuous OC/EC Field Analyzer by NIOSH/TOT method at Anmyeondo Global Atmosphere Watch (GAW) Regional Station (37°32'N, 127°19'E) in July and August, 2017. The mean values of OC and EC were 3.7 ㎍ m-3 and 0.7 ㎍ m-3, respectively. During the study period, the concentrations of reactive gases and aerosol compositions were evidently lower than those of other seasons. It is mostly due to meteorological setting of the northeast Asia, where the influence of continental outflow is at its minimum during this season under southwesterly wind. While the diurnal variation of OC and EC were not clear, the concentrations of O3, CO, NOx, EC, and OC were evidently enhanced under easterly wind at night from 20:00 to 8:00. However, the high concentration of EC was observed concurrently with CO and NOx under northerly wind during 20:00~24:00. It indicates the influence of thermal power plant and industrial facilities, which was recognized as a major emission source during KORUS-AQ campaign. The diurnal variations of pollutants clearly showed the influence of land-sea breeze, in which OC showed good correlation between EC and O3 in seabreeze. It is estimated to be the recirculation of pollutants in land-sea breeze cycle. This study suggests that in general, Anmyeondo station serves well as a background monitoring station. However, the variation in meteorological condition is so dynamic that it is primary factor to determine the concentrations of secondary species as well as primary pollutants at Anmyeondo station.

Concentrations of Carbonaceous Compounds and Quantitation of Secondary Organic Carbon in PM2.5 at Taehwa Research Forest

  • Lee, Seung-Ha;Lee, Sang-Deok;Kim, Dan-Bi;Kim, Rhok-Ho;Lee, Sang-Bo
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.53-56
    • /
    • 2018
  • Elemental carbon (EC) and organic carbon (OC) mass concentrations in PM2.5 were measured from March through October 2015 in Taehwa Research Forest (TRF). The concentration of carbon in the TRF was $3.4{\mu}g/m^3$ and the concentration of EC was $1.4{\mu}g/m^3$. Also the concentration of $OC_{sec}$ was the highest at $2.84{\mu}g/m^3$ in the summer and the lowest at 1.66 in the spring. The ratio of the secondary generation OC in the total OC was the highest at 62% in the summer. Monthly OC concentration was the lowest at $2.38{\mu}g/m^3$ in April and the highest at $6.60{\mu}g/m^3$ in July. In case of EC concentration was the lowest in April ($0.98{\mu}g/m^3$) and the highest in July ($3.41{\mu}g/m^3$). The OC/EC ratio showed the lowest ratio in March and the highest rate in September. It is suggested that the secondary generation reaction of OC component was active due to sufficient irradiation amount in summer.

Effects of Onchung-eum Administration along with Samhwangseze-gamibang on Treatment Atopic Dermatitis Development in NC/Nga Mice (온청음(溫淸飮)과 삼황세제가미방(三黃洗劑加味方) 병용이 NC/Nga 아토피 생쥐에 미치는 영향)

  • Hong, Chul-Hee;Seo, Eun-Sung;Weon, Young-Ho;Kim, Yeong-Geun;Hwang, Chung-Yeon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.679-687
    • /
    • 2007
  • The purpose of this study is to examine closely effect that Onchung-eum(OC) and Samhwangseze-gamibang(SG) used to atopic dermatitis disease patient get in atopy eruption control experimentally. Atopic dermatitis(AD) of molecular mechanism underlying it's effectiveness is unknown. We analyzed the expression the clinical severities in 13 and 16 weeks old NC/Nga mice, and the spleen weight of OC with SG treated NC/Nga mice, and mRNA expression levels of IL-4, IL-5, and CCR3 in the skin tissues of OC with SG treated NC/Nga mice, and IL-1${\beta}$, TNF-${\alpha}$, IL-6 express of gene, and Histological observation of the ear and skin tissues, and than IgE, IL-4, IL-5, IL-6, IgM, IgGl levels in the serum of OC with SG treated NC/Nga mouse group compared to the untreated control mouse group. Also, We examined cell toxicity that of OC is safety the strength of 10, 50, 100ppm and inflammatory RAW 264.7 in the serum of OC. Thus in these present study diverse immune responses in terms of chemical mediators related to AD were investigated using an atopic mouse model NC/Nga after OC along with 5G. At the result that OC along with SG treat is can effective use for the treatment of atopic dermatitis(AD).

Synthesis of Monodispersed Silica Fine Particle by Hydrolysis of Ethyl Silicate(1) (Ethyl Silicate의 가수분해에 의한 단분산 Silica 미립자의 합성(1))

  • 오일환;박금철
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.5
    • /
    • pp.500-506
    • /
    • 1987
  • In order to synthesize monodispersed spherical silica fine particles, we investigated the reaction of hydrolysis of 0.05∼4.0 mole Si(OC2H5)4-0.01∼7.60mole NH3 -0.24∼38.40 mole H2O-2.62∼16.88mole C2H5OH systems. The range of the composition of solution which spherical silica particles were formed was enlarged according to an increase in concentration of Si(OC2H5)4. Larger particles were obtained at higher molar ratios of Si(OC2H5)4/C2H5OH, NH3/H2O and H2O/Si(OC2H5)4 and at a lower reaction temperature.

  • PDF

Chemical Characteristics of Water Soluble Components in Fine Particulate Matter at a Gwangju area (광주지역 PM2.5 입자 수용성 성분의 화학적 특성조사)

  • Park, Seung Shik;Cho, Sung Yong;Kim, Seung Jai
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.20-26
    • /
    • 2010
  • Water soluble organic and inorganic species are important components in atmospheric aerosol particles and may act as cloud condensation nuclei to indirectly affect the climate. To characterize organic and elemental carbon(OC and EC), water-soluble organic carbon(WSOC) and inorganic ionic species contents, daily $PM_{2.5}$ measurements were made during the wintertime at an urban site of Gwangju. Average concentrations of WSOC, $NO_3^-$, $SO_4^{2-}$ and $NH_4^+$, which are major components in the water-soluble fraction in PM2.5, are 2.11, 5.73, 3.51 and $3.31{\mu}g/m^3$, respectively, representing 12.0(2.9~23.9%), 21.0(12.9~37.6%), 11.6(2.5~25.9%) and 11.7%(3.8~18.6%) of the $PM_{2.5}$, respectively. Abundance of water soluble organic compounds ranged from 5.4 to 35.9% of total water soluble organic and inorganic components with a mean of 17.6%. Even though the sampling was performed during the winter, the average contributions of secondary OC and WSOC, as deduced from primary OC/EC(or WSOC/EC) ratio, were relatively high, accounting for 17.9%(0~44.4%) of the total OC and 11.2%(0.0~51.4%) of the total WSOC, respectively. During the sampling period, low $SO_4^{2-}/(SO_4^{2-}+SO_2$) ratio of 0.14(0.03~0.32) and relative humidity condition in the winter time suggest an possibility of impact of long-range transport and/or aqueous transformation processes such as metal catalyzed oxidation of sulfur, in-cloud processes, etc.

The Effect of Substituents on the Liquid Crystalline Behavior of New H-Shaped Dimesogenic Conpounds (새로운 H-자형 이메소겐 화합물의 액정특성에 치환기가 미치는 효과)

  • Park, Joo Hoon;Jin, Jung Il
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.3
    • /
    • pp.315-322
    • /
    • 1998
  • A series of new dimesogenic compounds were prepared and their thermotropic and liquid crystalline properties were studied by differential scanning calorimetry and on a hot-stage of a polarizing microscope. These compounds, 1,10-bis[2,5-bis(4-substitutedphenoxycarbonyl)phenoxy]decanes, consist of two bis(ρ-substitutedphenoxy)terephthalate units interconnected through a oxydecamethyleneoxy spacer on the central terephthaloyl units resulting in the structure of "H-shaped" dimeric twin compounds. The terminal substitutent groups were changed; X=-F, -H, -I, -Cl, -Br, $-NO_2,\;-CF_3,\;-OC_4H_9,\;-CN\;and\;-C_6H_5.$ The compounds with X=$-OC_4H_9,\;-CN\;and\;-C_6H_5$ were monotropically nematic. In contrast, the compounds with $X=-F, -H, -I, -Cl, -Br, $-NO_2\;and\;-CF_3$ were non-liquid crystals. The nematic group efficiency of these compounds was in the order of -C_6H_5>-CN>-OC_4H_9.$

  • PDF