• Title/Summary/Keyword: OC3 spar

Search Result 5, Processing Time 0.024 seconds

Model test of new floating offshore wind turbine platforms

  • Shin, Hyunkyoung;Pham, Thanh Dam;Jung, Kwang Jin;Song, Jinseob;Rim, Chaewhan;Chung, Taeyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.199-209
    • /
    • 2013
  • This paper presents the model test results of 3 new spar platforms which were developed based on the OC3-Hywind spar to support a 5-MW wind turbine. By changing the shape but keeping both volume and mass of OC3-Hywind spar platform, those platforms were expected to experience different hydrodynamic and hydrostatic loads. The scale models were built with a 1/128 scale ratio. The model tests were carried out in waves, including both rotating rotor effect and mean wind speed. The characteristic motions of the 3 new models were measured; Response Amplitude Operators (RAO) and significant motions were calculated and compared with those of OC3-Hywind.

Model test and numerical simulation of OC3 spar type floating offshore wind turbine

  • Ahn, Hyeon-Jeong;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Nowadays, the study on Floating Offshore Wind Turbines (FOWTs) is being performed globally. Dozens of numerical simulation tools have been developed for designing FOWTs and simulating their performances in combined wave and wind environments. On the other hand, model tests are still required to verify the results obtained from numerical simulation tools. To predict seakeeping performance of the OC3-Hywind platform, a OC3 spar model moored by a 3-leg catenary spread mooring system with a delta connection was built with a 1/128 scale ratio. The model tests were carried out for various sea states, including rotating rotor effect with wind in the Ocean Engineering Wide Tank, University Of Ulsan (UOU). The model test results are compared with the numerical simulations by UOU in-house code and FAST.

A Study on the Characteristics of WindHydro - a Floating Wind Turbine Simulation Code (부유식 풍력발전 해석 프로그램 WindHydro 특성 연구)

  • Song, Jinseop;Rim, Chae Whan;Lee, Sungkyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.37.1-37.1
    • /
    • 2011
  • A floating wind turbine dynamic simulation program, 'WindHydro', is newly developed. In order to investigate the characteristics of the program, a series of loading cases are simulated such as (1) wind only case, (2) free decay cases with initial displacement, (3) wave only case (4) wind and wave case. The simulations are carried out for the 5-MW OC3-Hywind model which has a spar buoy and catenary mooring lines. As a result, the reliability of WindHydro is verified in most viewpoints although additional study is still necessary to clear out some uncertainty of the program.

  • PDF

A Study on a Dynamics Simulation Program Development for Floating Wind Turbines (부유식 풍력발전 시스템 동역학 해석 프로그램 개발 연구)

  • Rim, Chae-Whan;Song, Jin-Seop;Chung, Tae-Young;Moon, Seok-Jun;Go, Jin-Yong;Lee, Sung-Kyun;Bae, Dae-Sung;Bae, Dong-Hee
    • Journal of Wind Energy
    • /
    • v.2 no.2
    • /
    • pp.30-37
    • /
    • 2011
  • A floating wind turbine dynamic simulation program, WindHydro, is newly developed taking into account wind inflow and incident wave. WindHydro consists of 5 modules, HDFloat for hydrodynamics, HDProp for hydrodynamic property calculation, HDMoor for mooring dynamics, AeroDyn for aerodynamics, DAFUL for multi-body dynamics with nonlinear elasticity, and interface program that connects each calculation module. A turbulent wind and regular wave load case is simulated for the 5-MW OC3-Hywind with a spar bouy platform and catenary mooring lines. The results are compared with the results of the FAST(developed by NREL). As a result, the overall system responses from WindHydro and FAST agree well although some differences in the generator responses are observed.

Floating offshore wind turbine system simulation

  • Shi, Wei;Park, Hyeon-Cheol;Jeong, Jin-Hwa;Kim, Chang-Wan;Kim, Yeong-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.466-472
    • /
    • 2009
  • Offshore wind energy is gaining more and more attention during this decade. For the countries with coast sites, the water depth is significantly large. This causes attention to the floating wind turbine. Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structures. In this work, a three-bladed 5MW upwind wind turbine installed on a floating spar buoy in 320m of water is studied by using of fully coupled aero-hydro-servo-elastic simulation tool. Specifications of the structures are chosen from the OC3 (Offshore Code Comparison Collaboration) under "IEA Wind Annex XXIII-subtask2". The primary external conditions due to wind and waves are simulated. Certain design load case is investigated.

  • PDF