• Title/Summary/Keyword: OC curve

Search Result 35, Processing Time 0.017 seconds

Mathematical Consideration on PV Cell Modeling (PV cell modeling의 수학적 고찰)

  • Park, Hyeonah;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 2014
  • PV cell modeling is necessary both for software and hardware simulators in analyzing and testing the performance of PV generation systems. Unique I-V curve of a PV cell identifies its own characteristics by electrical equivalent model that is composed of diode constants ($I_o$, $v_t$), photo-generated current ($I_{ph}$), series resistance ($R_s$), and shunt resistance ($R_{sh}$). Photo-generated current can be easily estimated since it is proportional to irradiation level. However, other electrical parameters should be solved from the manufacturer's data sheet that is consisted with three remarkable operating points such as open circuit voltage ($V_{oc}$), short circuit current ($I_{sc}$), and maximum power voltage/current ($V_{MPP}/I_{MPP}$). This paper explains and analyzes mathematical process of a novel PV cell modeling algorithm that was proposed by the authors with the name of "K-algorithm".

Photoelectric Properties of PbTe/CuPc Bilayer Thin Films (PbTe/CuPc 이층박막의 광전 특성)

  • Lee, Hea-Yeon;Kang, Young-Soo;Park, Jong-Man;Lee, Jong-Kyu;Jeong, Jung-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.67-72
    • /
    • 1998
  • The crystallized CuPc and PbTe films are formed by thermal evaporation and pulsed ArF excimer laser ablation. Structural and electrical properties of thin film is observed by XRD and current-voltage(I-V) curves. From XRD analysis, both PbTe and CuPc thin films show a-axis oriented structure. For the measurement of photovoltaic effect, the transverse current-voltage curve of CuPc/Si, PbTe/Si and PbTe/CuPc/Si junctions have been analyzed in the dark and under illumination. The PbTe/CuPc/Si junction exthibits a strong photovoltaic characteristics with short circuit current($J_{sc}$) of $25.46\;mA/cm^{2}$ and open-circuit voltage($V_{oc}$) of 170 mV. Quantum efficiency and power conversion efficiency are calculated to be 15.4% and $3.46{\times}10^{-2}$, respectively. Based on the results of QE and ${\eta}$, the photocurrent process of PbTe/CuPc/Si junction can be explained as following three effective steps; photocarrier generation in the CuPc layer, carrier separation at PbTe/CuPc interface, and finally a transportation of electrons through the PbTe layer.

  • PDF

On the Application of Zp Control Charts for Very Small Fraction of Nonconforming under Non-normal Process (비정규 공정의 극소 불량률 관리를 위한 Zp 관리도 적용 방안 연구)

  • Kim, Jong-Gurl;Choi, Seong-Won;Kim, Hye-Mi;Um, Sang-Joon
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.1
    • /
    • pp.167-180
    • /
    • 2016
  • Purpose: The problem for the traditional control chart is that it is unable to monitor the very small fraction of nonconforming and the underlying distribution is the normal distribution. $Z_p$ control chart is useful where it controls the vert small fraction on nonconforming. In this study, we will design the $Z_p$ control chart in order to use under non-normal process. Methods: $Z_p$ is calculated not by failure rate based on attribute data but using variable data. Control limit for non-normal $Z_p$ control chart is designed based on ${\alpha}$-risk calculated by cumulative distribution function of Burr distribution. ${\beta}$-risk, which is for performance evaluation, obtains in the Burr distribution's cumulative distribution function and control limit. Results: The control limit for non-normal $Z_p$ control chart is designed based on Burr distribution. The sensitivity can be checked through ARL table and OC curve. Conclusion: Non-normal $Z_p$ control chart is able to control not only the very small fraction of nonconforming, but it is also useful when $Z_p$ distribution is non-normal distribution.

The Fluorescence Behavior of the Responsive Macrocycle by Aromatic Imine Molecules

  • Choi, Chang-Shik;Jeon, Ki-Seok;Lee, Ki-Hwan
    • Journal of Photoscience
    • /
    • v.11 no.32
    • /
    • pp.71-74
    • /
    • 2004
  • The macrocycle L exhibited a switch on-off behavior through the fluorescent responses by aromatic imine molecule 1 (X=H) / trifluoroacetic acid (TFA). In the 'switch on' state, it was supposed that the aromatic imine molecule 1 is in the cavity of macrocycle L and a photoinduced electron transfer (PET) from the nitrogen of azacrown part to the anthryl group is inhibited by the interaction between the aromatic imine molecule 1 and the azacrown part of macrocycle L. In the 'switch off' state, it was supposed that the protonated imine molecule 1 is induced by the continuous addition of TFA and a repulsion between the protonated azacrown part and the protonated imine molecule 1 is occurred. It was considered that this process induces the intermolecular PET from the protonated imine molecule 1 to the anthryl group of macrocycle L because of a proximity effect between the anthryl group and the protonated imine molecule 1. From the investigation of the transient emission decay curve, the macrocycle L showed three components (3.45 ns (79.72%), 0.61 ns (14.53%), and 0.10 ns (5.75%). When the imine molecule 1 was added in the macrocycle L as molar ratio=1:1, the first main component showed a little longer lifetime as 3.68 ns (82.75%) although the other two components were similar as 0.64 ns (14.28%) and 0.08 ns (2.96%). On the contrary, when the imine molecule 3 (X=C1) was added in the macrocycle L as molar ratio=l:1, all the three components were decreased such as 3.27 ns (69.83%), 0.44 ns (13.24%), and 0.06 ns (16.93%). The fluorescent pH titration of macrocycle L was carried out from pH=3 to pH=9. The macrocycle L and C $U^{2+}$- macrocycle L complex were intersected at about pH=5, while the E $u^{3+}$ -macrocycle L complex was intersected at about pH=5.5. In addtion, we investigated the fluorescence change of macrocycle L as a function of the substituent constant ($\sigma$$_{p}$$^{o}$) showing in the para-substituent with electron withdrawing groups (X=F, Cl) and electron donating groups (X=C $H_3$, OC $H_3$, N(C $H_3$)$_2$), respectively, as well as non-substituent (X=H).).ctively, as well as non-substituent (X=H).

  • PDF

A Study on the Fabrication of the Solar Cells using the Recycled Silicon Wafers (Recycled Si Wafer를 이용한 태양전지의 제작과 특성 연구)

  • Choi, Song-Ho;Jeong, Kwang-Jin;Koo, Kyoung-Wan;Cho, Tong-Yul;Chun, Hui-Gon
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.70-75
    • /
    • 2000
  • The recycled single crystal silicon wafers have been fabricated into solar cells. It can be a solution for the high cost in materials for solar cells and recycling of materials. So, p-type (100) single crystal silicon wafers with high resistivity of $10-14\;{\Omega}cm$ and the thickness of $650\;{\mu}m$ were used for the fabrication of solar cells. Optimistic conditions of formation of back surface field, surface texturing and anti-reflection coating were studied for getting high efficiency. In addition, thickness variation of solar cell was also studied for increase of efficiency. As a result, the solar cell with efficiency of 10% with a curve fill factor of 0.53 was fabricated with the wafers which have the area of $4\;cm^2$ and thickness of $300\;{\mu}m$. According to above results, recycling possibility of wasted wafers to single crystal silicon solar cells was confirmed.

  • PDF