• Title/Summary/Keyword: OAW

Search Result 3, Processing Time 0.019 seconds

Effect of the Welding Methods on the Characteristics of Overlaying Seat-surfaces of Engine Valves (엔진밸브 시트 표면의 오버레이층 특성에 미치는 용접법의 영향)

  • 이병영;최병길
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.517-524
    • /
    • 2002
  • An overlaying of the seating surfaces of engine valves by OAW, GTAW or PTA weldings are common practice. The OAW method of a lower torch energy density compared to GTAW and PTA methods produces smoother deposits but the pain size at the vicinity of the interface is increased remarkably up to $30~50{\mu\textrm{m}}$ (that of base metal is about $10\mu\textrm{m}$). It's grain coarsening and the solute dilution are related to the decarburizing during OAW could be minimized by reducing the preheating temperature and by maintaining the carbide precipitates in base metal prior to welding. The formation of columnar structures and carbide precipitation zone in the vicinity of the GTAW welded interface, because of the high heat concentration, causes weakened zone on the valve seat face. The width of the reaction boundary zone is about $50\mu\textrm{m}$ for PTA and GTAW overlaying, and about $150\mu\textrm{m}$ for OAW welding. The smaller width of the reaction boundary zone is the less the solute-dilution rate. Thereby PTA welding may be recommended for overlaying of the seating surfaces.

Optimum Design of Dye-Sensitized Solar Module for Building-Integrated Photovoltaic Systems

  • Lee, Kyu-Seok;Kang, Man Gu
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.859-865
    • /
    • 2017
  • This paper presents a method for determining the optimum active-area width (OAW) of solar cells in a module architecture. The current density-voltage curve of a reference cell with a narrow active-area width is used to reproduce the current density profile in the test cell whose active area width is to be optimized. We obtained self-consistent current density and electric potential profiles from iterative calculations of both properties, considering the distributed resistance of the contact layers. Further, we determined the OAW that yields the maximum efficiency by calculating efficiency as a function of the active-area width. The proposed method can be applied to the design of the active area of a dye-sensitized solar cell in Z-type series connection modules for indoor and building-integrated photovoltaic systems. Our calculations predicted that OAW increases as the sheet resistances of the contact layers and the intensity of light decrease.

Bioactive Metabolites Produced by Pseudonocardia endophytica VUK-10 from Mangrove Sediments: Isolation, Chemical Structure Determination and Bioactivity

  • Mangamuri, Usha Kiranmayi;Vijayalakshmi, Muvva;Poda, Sudhakar;Manavathi, Bramanandam;Bhujangarao, Ch.;Venkateswarlu, Y.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.629-636
    • /
    • 2015
  • Chemical investigation of the actinobacterial isolate Pseudonocardia endophytica VUK-10 has led to the segregation of two known bioactive compounds, namely 4-(2-acetamidoethyl) phenyl acetate and 4-((1, 4-dioxooctahydropyrrolo [1, 2-a] pyrazin-3-yl) methyl) phenyl acetate. The strain was isolated from a sediment sample of the Nizampatnam mangrove ecosystem, south coastal Andhra Pradesh, India. The chemical structure of the active compounds was established on the basis of spectroscopic analysis, including 1H NMR and 13C NMR spectroscopies, FTIR, and EIMS. The antimicrobial and cytotoxic activities of the bioactive compounds produced by the strain were tested against opportunistic and pathogenic bacteria and fungi and on MDA-MB-231, OAW, HeLa, and MCF-7 cell lines. The compounds exhibited antimicrobial activities against gram-positive and gram-negative bacteria and fungi and also showed potent cytotoxic activity against MDA-MB-231, OAW, HeLa, and MCF-7 cell lines. This is the first example for this class of bioactive compounds isolated from Pseudonocardia of mangrove origin.