• Title/Summary/Keyword: O2O Application Characteristics

Search Result 638, Processing Time 0.029 seconds

The Characteristics of PZ-PT PMN Piezoelectric Ceramics for Application to High Power Device (고출력 압전 디바이스 응용을 위한 PZ-PT-PMN계 압전 세라믹의 특성)

  • ;洪鍾國
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.3
    • /
    • pp.156-156
    • /
    • 2000
  • The piezoelectric properties and the doping effect for $0.95Pb(Zr_xTi_{l-x})O_3+0.O5Pb(Mn_{1/3}Nb_{2/3})O_3$compositions were studied. Also, the heat generation and the change of electromechanical characteristics, the important problem in practical usage, were investigated under high electric field driving. As a experiment results under low electric field, the value of $k_p$ and ${\varepsilon}_{33}^T$ were maximized, but $Q_m$ was minimized $(k_p=0.57, Q_m=1550)$ in the composition of x=0.51. In order to increase the values of $Q_m$, $Nb_2O_5$ was used as a dopant. As the result of that, the grain size was suppressed and the uniformity of grain was improved. Also, the values of $k_p$ decreased, and the values of $Q_m$ increased with doping concentration of $Nb_2O_5$ . As a experiment results under high electric field driving, when vibration velocity was ower than 0.6[m/s], the temperature increase was 20[℃], and the change ratio of mechanical quality factor was less than 10[%]. So, its electromechanical characteristics was very stable. Conclusively, piezoelectric ceramic composition investigated at this paper is suitable for application to high power piezoelectric devices.

Sintering Characteristics of ZnO Fabricated by Spark Plasma Sintering Process for High Temperature Thermoelectric Materials Application (고온용 ZnO계 열전 재료의 방전플라즈마 소결 특성 및 미세구조)

  • 심광보;김경훈;홍영호;채재홍
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.560-565
    • /
    • 2003
  • M-doped (M=Al, Ni) ZnO thermoelectric materials were fully densified at low temperatures of 800∼1,000$^{\circ}C$ and their sintering characteristics and microstructural features were investigated. Electron microscopic analysis showed that the addition of NiO promoted tile formation of solid solution and caused actively grain growth. The addition of A1$_2$O$_3$ prevented the evaporation of pure ZnO at grain boundaries and suppressed the grain growth by the formation of secondary phase. In case of the addition of A1$_2$O$_3$ together with NiO, the specimen showed an excellent microstructure and also the SEM-EBSP (Electron Back-scattered Diffraction Pattern) analysis confirmed that it shows a superior grain boundary distribution to the others specimens. These microstructural characteristics induced by the addition of A1$_2$O$_3$ together with NiO may increase the electrical conductivity by the increase in carrier concentration and decrease the thermal conductivity by the phonon scattering effect and, consequently, improve the thermoelectric property.

The Novel Liquid Crystal Materials for AM-LCDs

  • Yamaguchi, T.;Kibe, S.;Matsui, S.;Yamamoto, H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.924-929
    • /
    • 2002
  • We have developed the novel liquid crystal materials with a difluoromethyleneoxy (CF2O) moiety as a linkage group in order to satisfy the diversified various requirements for AM-LCDs. These novel CF2O LC materials have excellent physical properties that are high dielectric anisotropy, low viscosity and wide nematic temperature ranges. Physical properties measurement results that mixtures containing CF2O LC materials have suitable for characteristics for AM-LCDs. The CF2O LC materials are excellent compound for quick response and low driving voltage application.

  • PDF

Direct Sealing Glass-Ceramics to Metal (직접 결합방법에 의한 Glass-Ceramics과 금속의 접합)

  • Kim, Hwan;Lee, Ki-Kang
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.2
    • /
    • pp.99-104
    • /
    • 1981
  • Glass-ceramics possessed a number of characteristics which suggested their suggested their use for sealing to metals. The choice of particular glass-ceramics compositions for this application is governed by various factors, including workability of the glasses, thermal expansion characteristics and the matching of these to appropriate metals. Other properties, such as mechanical strength, determined the performance of glass-ceramics to metal seals. The purpose of the present study was to investigate direct sealing behaviour of copper to $Li_2O-ZnO-SiO_2$ system glass-ceramics. The design of the seal was a concentric seal which might contribute to the strong bond formation by providing compressive stress during thermal excursions. Tensile strengths of sealing layers were measured by Instron test machine. The layers were examined by electron probe microanalyzer. Crsystallization rate was increased with the amount of ZnO or $Li_2O$, and ZnO increased the sealing strength, but $Li_2O$ lowered it. Sealing mechanism was due to the formation of metal oxides, which acted as binder between copper and glass-ceramics. The nickle-plated copper seal with 10% $Li_2O$ and 30% ZnO was the most strong seal, and its sealing strength was more than 56kg/$\textrm{cm}^2$.

  • PDF

Electromagnetic Properties of Bulk High-Tc Superconductor (벌크형 초전도체의 전기자기적 특성)

  • Lee, Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.111-114
    • /
    • 2017
  • In this research, the development of fabrication technique of bulk YBaCuO superconductors for application was studied. In fluence of $BaZrO_3$ addition on magnetization characteristics of thermal pyrolysis textured YBaCuO superconductor was investigated. Fine $BaZrO_3$ particle were dispersed within the textured YBaCuO matrix by means of the thermal pyrolysis processing. Magnetic levitation force for YBaCuO superconductors were obtained using Nd-B-Fe permanent magnet, at 77 K and at the magnetic field from 0 to 5.3 K gauss. In the unadded superconductor and 5 wt% $BaZrO_3$ addition, anomalous magnetization behavior, which is characterized by the intermediate magnetic field, was observed at 77 K. Critical current density was about few hundreds $A/cm^2$ and the magnetic characteristics increased slightly by addition of $BaZrO_3$ powder. Maximum magnetic force was obtained in the YBaCuO superconducting bulk with 3 wt.% $BaZrO_3$ addition.

Passivation property of Al2O3 thin film for the application of n-type crystalline Si solar cells (N-type 결정질 실리콘 태양전지 응용을 위한 Al2O3 박막의 패시베이션 특성 연구)

  • Jeong, Myung-Il;Choi, Chel-Jong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.106-110
    • /
    • 2014
  • The passivation property of $Al_2O_3$ thin film formed using atomic layer deposition (ALD) for the application of crystalline Si solar cells was investigated using microwave photoconductance decay (${\mu}$-PCD). After post-annealing at $400^{\circ}C$ for 5 min, $Al_2O_3$ thin film exhibited the structural stability having amorphous nature without the interfacial reaction between $Al_2O_3$ and Si. The post-annealing at $400^{\circ}C$ for 5 min led to an increase in the relative effective lifetime of $Al_2O_3$ thin film. This could be associated with the field effective passivation combined with surface passivation of textured Si. The capacitance-voltage (C-V) characteristics of the metal-oxide-semiconductor (MOS) with $Al_2O_3$ thin film post-annealed at $400^{\circ}C$ for 5 min was carried out to evaluate the negative fixed charge of $Al_2O_3$ thin film. From the relationship between flatband voltage ($V_{FB}$) and equivalent oxide thickness (EOT), which were extracted from C-V characteristics, the negative fixed charge of $Al_2O_3$ thin film was calculated to be $2.5{\times}10^{12}cm^{-2}$, of which value was applicable to the passivation layer of n-type crystalline Si solar cells.

Effect of Silicon Source and Application Method on Growth of Kalanchoe 'Peperu' (규산염 종류와 적용방법이 칼랑코에 '페페루'의 생육에 미치는 영향)

  • Son, Moon-Sook;Oh, Hye-Jin;Song, Ju-Yeon;Lim, Mi-Young;Sivanesan, Iyyakkannu;Jeong, Byoung-Ryong
    • Horticultural Science & Technology
    • /
    • v.30 no.3
    • /
    • pp.250-255
    • /
    • 2012
  • The effect of different source silicon ($CaSiO_3$, $K_2SiO_3$, and $NaSiO_3$) and their application methods (foliar application and subirrigation) on the growth of potted kalanchoe was investigated. Rooted terminal cuttings of Kalanchoe blossfeldiana 'Peperu' were transplanted into 10.5 cm plastic pots containing a commercial growing medium. Then, a nutrient solution, containing 0 or $50mg{\cdot}L^{-1}$ Si as $K_2SiO_3$, $Na_2SiO_3$, or $CaSiO_3$ and adjusted to EC 1.4-$1.6mS{\cdot}cm^{-1}$ and pH 6.0, was supplied through subirrigation along with the nutrient solution or by a foliar application. Plants were grown in a glasshouse under a mean temperature of $23^{\circ}C$ and RH of 70-80%. After 12 weeks of cultivation, plant growth characteristics and leaf tissue contents of P, K, Ca, Mg, Na, S, and Si were measured. Both subirrigational supply and foliar application of Si decreased the plant height and flower stem length. However, the plant condition in the foliar application resulted in disease-like soft rot on the leaf. Among three silicon sources tested, $CaSiO_3$ supplied through a subirrigation system increased shoot tissue contents of Si and chlorophyll as compared to the $Na_2SiO_3$ or $K_2SiO_3$ treatment. Shoot tissue contents of Ca, K, and Na increased when the plant was supplied with $CaSiO_3$, $K_2SiO_3$, and $Na_2SiO_3$, respectively. Subirrigational supply of $K_2SiO_3$ and $NaSiO_3$ decreased the shoot tissue contents of Ca and Mg, and K and Ca, respectively. Therefore, $CaSiO_3$ supplied through a subirrigation system could improve plant quality of kalanchoe 'Peperu' making compact potted plants.

$TiO_2$ Nanocubes for Rapid Electron Transfer in Dye-Sensitized Solar Cell

  • Yang, Hye-Yeong;Bang, So-Yeon;Lee, Do-Gwon;Go, Min-Jae;Kim, Gyeong-Gon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.317-317
    • /
    • 2010
  • This paper reports syntheses of $TiO_2$ nanocubes and theirs application to DSSC. We synthesized $TiO_2$ nanocubes via solvothermal method using titanium isopropoxide (TTIP) and tetramethylammoiumhydroxide (TMAH). By adding longer alkyl chain ammonium hydroxide that slowed down the growth rate of the crystal, $TiO_2$ nanocubes were obtained with average particle size in the range of 40 nm to 70 nm. By TEM investigation, each particle was found to be single crystal of anatase having six-faces of (001) and {100} crystallographic planes truncated by {101} series of planes, which are clearly distinguishable from spherical nanoparticles. Among various application, utilizing nanocubes as photo-electrode in dye-sensitized solar cell, we investigated photo-electron conversion performances in comparison with spherical shaped $TiO_2$ nanoparticles by I-V characteristics and IPCE measurements, etc.. Photocurrent-transient analysis revealed that $TiO_2$ nanocubes have a higher transient electron transfer rate by more than 10 times compared with spherical particles of similar size. Fast electron transport along the cube edges having small curvature was suggested as a plausible origin of high diffusion coefficient of electron in nanocube $TiO_2$.

  • PDF

Low-voltage cathodoluminescent Characteristics of ZnGa$_2$O$_4$ : Mn phosphors

  • 조성희;유재수;이종덕;이중환
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.1
    • /
    • pp.57-62
    • /
    • 1997
  • Green-emitting $ZnGa_2O_4$ : Mn phosphors were synthesized by a thermal method and their low-voltage cathodoluminescent characteristics were examined for the field emitter display (FED) application. Low efficiency of $ZnGa_2O_4$ : Mn phosphors could be ascribed to the low penetration depth of into phosphors, which might results in charge accumulation on the phosphors screen. For increasing cathodoluminescent of $ZnGa_2O_4$ : Mn under low voltage excitation, wide band-gap oxide materials were added to the $ZnGa_2O_4$: Mn powder. It is found that the luminance can be increased by 20%. Measurement of leakage current on the phosphor screen shows that the enhancement of low-voltage cathodoluminescent by additive materials is mainly due to the consumption of surface charges on the phosphor.

  • PDF

Piezoelectric and Dielectric Characteristics of Low Temperature Sintering PMN-PZN-PZT Ceramics with the Amount of CuO addition (CuO첨가에 따른 저온소결 PMN-PZN-PZT 세라믹스의 압전 및 유전특성)

  • Lee, Il-Ha;Lee, Kab-Soo;Yoo, Ju-Hyun;Paik, Dong-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.288-289
    • /
    • 2007
  • In this study, in order to develop low temperature sintering ceramics for multilayer piezoelectric actuator application, PMN-PZN-PZT ceramics were manufactured as a function of the amount of CuO addition and their dielectric and piezoelectric characteristics were investigated. With the amount of CuO addition, the physical characteristics of specimens decreased. The specimens showed the optimum value at 0.5wt%CuO addition. Their optimum values were density=$7.93g/m^3$, ${\varepsilon}_r$=1398, kp=0.560, Qm=1706, $d_{33}$=327pC/N, respectively.

  • PDF