• Title/Summary/Keyword: O157:H7

Search Result 539, Processing Time 0.029 seconds

Epidemiologic Changes in Over 10 Years of Community-Acquired Bacterial Enteritis in Children

  • Yang, Jae Jin;Lee, Kunsong
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • Purpose: Community-acquired bacterial enteritis (CABE) is a common problem in developed countries. It is important to understand the epidemiologic changes in bacterial pathogens for prevention and treatment. Therefore, we studied the epidemiologic changes in CABE in Korean children. Methods: A total of 197 hospitalized pediatric patients aged <19 years that presented with dysentery symptoms and showed positive polymerase chain reaction results for bacterial species in stool samples, were enrolled in this study for 10 years (June 2010 to June 2020). We classified patients in phase I (06, 2010-06, 2015) and phase II (07, 2015-06, 2020) and analyzed their epidemiologic and clinical characteristics. Results: The most common pathogens were Campylobacter species (42.6%) and Salmonella species were the second most common pathogens (23.9%). The abundance of pathogens decreased in the following order: Clostridium difficile (9.6%), Shigella (5.6%), and Clostridium perfringens (5.6%). Escherichia coli O157:H7 was found to be the rarest pathogen (2.0%). Campylobacter species showed an increase in the infection rate from 32.1% in phase I to 49.6% in phase II (p=0.0011). Shigella species showed a decline in the infection rate in phase I from 14.1% to 0.0% in phase II (p<0.001). C. difficile and C. perfringens showed an increase in infection rate in phase II compared to phase I, but the difference was not statistically significant. Conclusion: The infection rate of Campylobacter species in CABE has been rising more recently, reaching almost 50%. This study may help establish policies for prevention and treatment of CABE in Korean children.

Molecular characterization and functionality of rumen-derived extracellular vesicles using a Caenorhabditis elegans animal model

  • Hyejin Choi;Daye Mun;Sangdon Ryu;Min-jin Kwak;Bum-Keun Kim;Dong-Jun Park;Sangnam Oh;Younghoon Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.652-663
    • /
    • 2023
  • The rumen fluids contain a wide range of bacteria, protozoa, fungi, and viruses. The various ruminal microorganisms in the rumen provide nutrients by fermenting the forage they eat. During metabolic processes, microorganisms present in the rumen release diverse vesicles during the fermentation process. Therefore, in this study, we confirmed the function of rumen extracellular vesicles (EVs) and their interaction with the host. We confirmed the structure of the rumen EVs by transmission electron microscope (TEM) and the size of the particles using nanoparticle tracking analysis (NTA). Rumen EVs range in size from 100 nm to 400 nm and are composed of microvesicles, microparticles, and ectosomes. Using the Caenorhabditis elegans smart animal model, we verified the interaction between the host and rumen EVs. Exposure of C. elegans to rumen EVs did not significantly enhance longevity, whereas exposure to the pathogenic bacteria Escherichia coli O157:H7 and Staphylococcus aureus significantly increased lifespan. Furthermore, transcriptome analysis showed gene expression alterations in C. elegans exposed to rumen EVs, with significant changes in the metabolic pathway, fatty acid degradation, and biosynthesis of cofactors. Our study describes the effect of rumen EV interactions with the host and provides novel insights for discovering biotherapeutic agents in the animal industry.

Sterilization of Rapeseed Sprouts by Intense Pulsed Light Treatment (고강도 광원을 이용한 새싹 채소의 살균)

  • Park, Heeran;Cha, Gyung-Hee;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.36-41
    • /
    • 2016
  • In this study, the effects of intense pulsed light (IPL) treatment on microbial inactivation and quality in rapeseed sprouts were investigated. Untreated rapeseed sprouts exhibit a high level of total aerobic bacteria (TAB) ($1.2{\times}10^7CFU/g$), coliform bacteria (coliform) ($3.3{\times}10^6CFU/g$), and pathogenic E. coli (PE) ($2.1{\times}10^5CFU/g$). The microorganisms found on rapeseed sprouts decreased with exposure to increasing light intensity and treatment time. The greatest reduction in microbial content was observed with a treatment of 1000 V, 5 pps for 10 min, where TAB, coliform, and PE levels decreased to 1.0 log CFU/g, 1.6 log CFU/g, and 1.8 log CFU/g, respectively. In agreement with these data, the microbial inactivation rate increased with the increase in the distance between the light source and the samples during IPL treatment. After IPL treatment of rapeseed sprouts, water content and vitamin C content decreased.

Antioxidant and Antimicrobial Activities of Extracts from Sarcodon aspratus (능이버섯(Sarcodon aspratus) 추출물의 항산화성과 항균성)

  • Yoon, Kyung-Young;Lee, Sook-Hee;Shin, Seung-Ryeul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.8
    • /
    • pp.967-972
    • /
    • 2006
  • The antioxidative and antimicrobial activities were determined on the mushroom (Sarcodon aspratus) extracts in order to find out new food functional components. The antioxidative activities of water and ethanol extracts from the Sarcodon aspratus were measured by peroxide values (POV), electron-donating ability (EDA) using 1,1-diphenyl-2-picryl hydroxyl (DPPH), nitrite-scavenging ability and superoxide dismutase-like activity (SODA) by pyrogallol. The antioxidative activity of the ethanol extract measured by POV was higher than those of the water extract, BHT, and ${\alpha}-tocopherol$. The EDA of the water extract and ethanol extract using DPPH showed the highest values of 76.94% and 73.06%, respectively. The nitrite-scavenging abilities (pH 1.2, 1,000 ppm) of the water and ethanol extracts were 72.61% and 62.69%, respectively, and the nitrite-scavenging ability of the water extract was higher than that of the ethanol extract in all pH values. The SODA of the ethanol extract was higher than that of the water extract. The Sarcodon aspratus extracts had antimicrobial effects on Listeria monocytogenes and Staphylococcus aureus.

Quantitative Evaluation of Foodborne Pathogenic Bacteria in Commercial Sangshik (시판 생식에서 식중독균의 정량적 평가)

  • Kwak Hyo-Sun;Whang In-Kyun;Park Jong-Seok;Kim Mi-Gyeung;Lee Kyun-Young;Gho Young-Ho;Bae Yoon-Young;Moon Sung-Yang;Byun Ju-Sun;Kwon Ki-Sung;Woo Gun-Jo
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.1
    • /
    • pp.41-46
    • /
    • 2006
  • This study was carried out to survey the prevalence of foodborne pathogens in Sangshik products and their raw materials far the purpose of ensuring safety of those products in market, and establishing microbial regulatory standard. From 2002 to 2004, a total of 191 Sangshik products were purchased from market or mail-order sales, and major foodborne pathogens; E. coli, Salmonella, Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, Listeria monocytogenes, Campylobacter jejuni, Yersinia enterocolitica, E. coli O157:H7, Vibrio parahaemolyticus were tested. B. cereus, C. perfringens and E. coli were detected from 29 samples (15.2%), 21 samples (11.0%) and 1 sample (0.5%), respectively. But other tested bacteria were not detected. For the identification of contamination source, 53 Sangshik ingredients were collected from 9 different manufacture factories. The results were similar with the Sangshik products. Aerobic plate counts were ranging from $1.0X10^3cfu/g\;to\;1.5X10^8cfu/g$. B. cereus was detected from 13 samples (24.5%), and counted as less than 100 cfu/g. C. perfringens were detected from 2 samples (3.8%), and counted as less than 100 cfu/g. Other foodborne pathogens were not detected except for B. cereus and C. perfringens. From the results, it was revealed that potential of microbial hazard by Sangshik was relatively low. However, it would be suggested that hygienic management and controling be needed for the prevention of growing contaminated pathogens and cross contamination during process and sale due to improper storage and management.

Establishment of Sample Preparation Method to Enhance Recovery of Food-borne Pathogens from Produce (농산물 중 식중독세균 검출을 위한 전처리법 확립)

  • Kim, Se-Ri;Choi, Song-Yi;Seo, Min-Kyoung;Lee, Ji-Young;Kim, Won-Il;Yoon, Yohan;Ryu, Kyoung Yul;Yun, Jong-Cul;Kim, Byung-Seok
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.3
    • /
    • pp.279-285
    • /
    • 2013
  • To establish sample preparation method for detection of food-borne pathogens from lettuce, perilla leaves, cucumber, pepper, and cherry tomato, the influences of diluent composition, processing time, and proportion of diluent to sample were examined. Each produce was inoculated with 6.0 log $CFU/cm^2$ of Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, Staphylococcus aureus, and Bacillus cereus. Each produce was treated with 0.1% peptone water, and D/E neutralizing broth. Processing time of produce was 30, 60, 90, and 120s, and the proportion of diluent to sample was 2 : 1, 4 : 1, 9 : 1, and 19 : 1. The number of bacteria after treatment of D/E neutralizing broth was higher than that of 0.1% peptone water (P<0.05). In cherry tomato, the population of S. typhimurium recovered from treated with D/E broth was higher than that recovered from treated with 0.1% peptone water by 1.05 log $CFU/cm^2$ (P<0.05). No difference in numbers of pathogens was observed in processing time. Optimum proportion of diluent to perilla leaf, iceberg lettuce, cucumber, green pepper, and tomato was 9 : 1, 4 : 1, 2 : 1, 2 : 1, and 2 : 1, respectively. These data suggest that D/E neutralizing broth should be recommend as diluent, and the diluent volume applied to produce should be determined in proportion to produce surface area per weight (g).

Microbial and Pathogenic Contamination of Ready-to-eat Fresh Vegetables in Korea (한국에 유통중인 신선편이 채소류의 미생물 품질 및 병원성 세균의 오염도 조사)

  • Bae, Young-Min;Hong, Yu-Jin;Kang, Dong-Hyun;Heu, Sung-Gi;Lee, Sun-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.161-168
    • /
    • 2011
  • The purpose of this study was to evaluate microbiological contamination of fresh vegetables in Korea. Twenty types of vegetables were tested for total aerobic bacteria, coliforms, Escherichia coli, yeast and mold, and pathogenic bacteria such as Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Salmonella, E. coli O157:H7, Cronobacter sakazakii, Shigella, and Campylobacter. Levels of total aerobic bacteria and coliform on 20 vegetables were between 3.74 and 8.04 log CFU/g, and 0.16 and 5.02 log CFU/g, respectively. The highest contamination levels of total aerobic bacteria were observed on water dropwort, sprouts, mungbean sprout, and ballflower root. There was no significant difference (p>0.05) in microbial contamination levels of total aerobic count, coliform, E. coli, yeast and mold between organic and nonorganic vegetables. When isolation methods using selective agars were applied, L. monocytogenes, B. cereus, Salmonella and Campylobacter were isolated from some fresh vegetable samples. Results of API kit tests showed that L. monocytogenes was identified on Chinese cabbage, cucumber, soybean sprouts, and iceberg lettuce while Salmonella was identified on Korean leek. Furthermore, Campylobacter jejuni was also identified in more than 50 of the 100 samples. However, when positive samples from API kit were tested for real-time PCR or 16S rRNA sequencing method, only B. cereus from perilla leaf, carrot, water dropwort, and sprouts showed positive results. These results indicate that selective agar and API kit detection methods might result in false positive results for some pathogens. Therefore, studies need to improve isolation or confirmation methods for such pathogens.

Control of Microorganisms in School Refectories and Kitchens Using Ozone Water and Ozone Gas (오존수 및 오존가스를 이용한 학교급식에서의 미생물 제어)

  • Choi, Jin-Kyung;Shin, Il-Shik;Kim, Dae Uk;Kim, Hee-Yun
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.586-592
    • /
    • 2015
  • This study was performed to determine optimum approaches for control of microorganisms in school refectories and kitchens. A reduction of more than 5.0 log CFU/mL was noted for Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, Staphylococcus aureus, and Streptococcus mutans after treatment with 5 ppm ozone water for 60 s. Treatment of different vegetables with ozone water for 5 min showed bactericidal effects with 2-4 log reduction of viable cell number; the bactericidal effects differed according to the kinds of vegetables. The viable cell number on kitchen apparatus and tableware was not detected by ozone water treatment for 60 s. In addition, the count of the bacteria floating in the air in refectories and kitchens decreased 2.0 log CFU/1,000 L air to 0-1 CFU/1,000 L air on treatment with 45 ppm ozone gas for 12 hr. Therefore, ozone water and ozone gas may be good candidates as antimicrobial agents that can be used to improve sanitary conditions in school refectories and kitchens.

Microbial Hazard Analysis of Manufacturing Processes for Starch Noodle (당면의 제조공정별 미생물학적 위해요소 분석)

  • Cheon, Jin-Young;Yang, Ji Hye;Kim, Min Jeong;Lee, Su-Mi;Cha, Myeonghwa;Park, Ki-Hwan;Ryu, Kyung
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.420-426
    • /
    • 2012
  • The purpose of this study was to identify control points through microbiological hazard analysis in the manufacturing processes of starch noodles. Samples were collected from the ingredients, manufacturing processes, equipment and environment. Microbiological hazard assessments were performed using aerobic plate counts (APC), Enterobacteriaceae (EB), E. coli and five pathogens including B. cereus, E. coli O157:H7, L. monocytogenes, Salmonella spp., and S. aureus. The APC levels in raw materials were from 2.12 to 3.83 log CFU/g. The contamination levels after kneading were 4.31 log CFU/g for APCs and 2.88 log CFU/g for EB counts. APCs decreased to 1.63 log CFU/g and EB were not detected after gelatinization, but their levels slightly increased upon cooling, cutting, ripening, freezing, thawing, and separating. The reuse of cooling and coating water would be a critical source of microbial increase after cooling. After drying, APCs and EB counts decreased to 5.05 log CFU/g and 2.74 log CFU/g, respectively, and the levels were maintained to final products. These results suggest that the cooling process is a critical control point for microbiological safety, and the cooling water should be treated and controlled to prevent cross contamination by pre-requisite program.

Potential Contamination Sources on Fresh Produce Associated with Food Safety

  • Choi, Jungmin;Lee, Sang In;Rackerby, Bryna;Moppert, Ian;McGorrin, Robert;Ha, Sang-Do;Park, Si Hong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.