• Title/Summary/Keyword: O-plasma treatment

Search Result 607, Processing Time 0.038 seconds

Effects of $O_2$ Plasma Treatment on the Electrical Properties of Organic Photovoltaic Cell (유기 광기전 소자의 전기적 특성에 미치는 산소 플라즈마 처리의 영향)

  • Oh, Dong-Hoon;Lee, Young-Sang;Park, Hee-Doo;Shin, Jong-Yeol;Kim, Tae-Wan;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1463-1464
    • /
    • 2011
  • An indium thin oxide(ITO) is used as a substrate material for organic light-emitting diodes(OLEDs) and organic photovoltaic cells. This study examined the effects of an $O_2$ plasma treatment on the electrical properties of an organic photovoltaic cell. The four probe method and Atomic force microscope(AFM) revealed the lowest surface resistance at the plasma treatment intensity of 250 [W] and the lowest average surface roughness of 2.0 [nm] at 250 [W]. The lowest average resistance of 17 [${\Omega}$/sq] was also observed at 250 [W] 40 [sec]. The $O_2$ plasma treatment device and a basic device in a structure of CuPc/C60/BCP/Al on ITO glass were fabricated by thermal evaporation, respectively. When the $O_2$ plasma treatment was used to the ITO, The experimental results revealed that the power conversion efficiency(PCE) indicated 65 [%] higher in the PCE than that without the plasma treatment.

  • PDF

Properties of ZnO:Ga Transparent Conducting Film Fabricated on O2 Plasma-Treated Polyethylene Naphthalate Substrate (산소플라즈마 전처리된 Polyethylene Naphthalate 기판 위에 증착된 ZnO:Ga 투명전도막의 특성)

  • Kim, Byeong-Guk;Kim, Jeong-Yeon;Oh, Byoung-Jin;Lim, Dong-Gun;Park, Jae-Hwan;Woo, Duck-Hyun;Kweon, Soon-Yong
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.175-180
    • /
    • 2010
  • Transparent conducting oxide (TCO) films are widely used for optoelectronic applications. Among TCO materials, zinc oxide (ZnO) has been studied extensively for its high optical transmission and electrical conduction. In this study, the effects of $O_2$ plasma pretreatment on the properties of Ga-doped ZnO films (GZO) on polyethylene naphthalate (PEN) substrate were studied. The $O_2$ plasma pretreatment process was used instead of conventional oxide buffer layers. The $O_2$ plasma treatment process has several merits compared with the oxide buffer layer treatment, especially on a mass production scale. In this process, an additional sputtering system for oxide composition is not needed and the plasma treatment process is easily adopted as an in-line process. GZO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion between the PEN substrate and the GZO film, the $O_2$ plasma pre-treatment process was used prior to GZO sputtering. As the RF power and the treatment time increased, the contact angle decreased and the RMS surface roughness increased significantly. It is believed that the surface energy and adhesive force of the polymer surfaces increased with the $O_2$ plasma treatment and that the crystallinity and grain size of the GZO films increased. When the RF power was 100W and the treatment time was 120 sec in the $O_2$ plasma pretreatment process, the resistivity of the GZO films on the PEN substrate was $1.05\;{\times}\;10^{-3}{\Omega}-cm$, which is an appropriate range for most optoelectronic applications.

Surface Characterization and Morphology in Ar-Plasma-Treated Polypropylene Blend

  • Weon, Jong-Il;Choi, Kil-Yeong
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.886-893
    • /
    • 2009
  • Surface modifications using a radio frequency Ar-plasma treatment were performed on a polypropylene (PP) blend used for automotive bumper fascia. The surface characterization and morphology were examined. With increasing aging time, there was an increase in wettability, oxygen containing polar functional groups (i.e., C-O, C=O and O-C=O) due to oxidation, the amount of tale, and bearing depth and roughness on the PP surface, while there was a decrease in the number of hydrocarbon groups (i.e., C-C and C-H). AFM indicated that the Ar-plasma-treatment on a PP blend surface transforms the wholly annular surface into a locally dimpled surface, leading to an improvement in wettability. SEM showed that the PP layer observed in the non-plasma-treated sample was removed after the Ar-plasma treatment and the rubber particles were exposed to the surface. The observed surface characterization and morphologies are responsible for the improved wettability and interfacial adhesion between the PP blend substrate and bumper coating layers.

A Study on the Surface Analysis of Plasma-Treated PET Film (플라즈마 처리된 PET 필름의 표면분석에 관한 연구)

  • Lim Kyung-Bum;Choi Hoon-Young;Lee Seok-Hyun;Lee Duck-Chool
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.12
    • /
    • pp.596-600
    • /
    • 2004
  • In this study, the surface properties of PET film were analyzed after plasma surface treatment. After plasma treatment of surface roughness and XPS were evaluated to analyze the chemical property, while the surface potential decay and surface resistance rate was measured to analyze the electric관 characteristic. When plasma discharge treatment was conducted for less than 10 minutes, the electrical insulating property was improved by evaporation of low molecular weight materials and cleaning of surface. However, when the treatment was conducted for more than 10 minutes, the insulating property was decreased due to excessive discharge energy. Analyses of chemical characteristics showed that 10-minute treatment resulted in increase of C-O and O=C-O bonds. However, when treated for more than 10 minutes. they were relatively decreased.

Plasma-sprayed Coatings of Aluminium Oxide and Mulite

  • Soh, Dea-Wha;Korobova, N.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.336-339
    • /
    • 2003
  • The present report is the investigation of the effects of the HIP treatment on plasma-sprayed ceramic coating of $Al_2O_3$, $Al_2O_3-SiO_2$ on the metal substrate. These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing.

  • PDF

Effects of the Plasma Treatment on the Physical Property of ZnO Thin Film (플라즈마 처리가 ZnO 박막의 물리적 특성에 미치는 영향)

  • Cho, Jae-Won;Joung, Tae-Young;Rhee, Seuk-Joo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.173-176
    • /
    • 2011
  • The characteristic changes in ZnO thin film according to H- and O- plasma treatments have been studied by Photoluminescence (PL) spectroscopy at room temperature. The red shift of UV peak by 20-30 meV in PL spectra after plasma treatments is identified, which indicates that there are changes in the binding energy of bound exciton and/or the movement of energy levels of lattice defects and impurities. The width of UV peak is decreased after plasma treatments, which is believed to be closely related to the crystal quality of ZnO film. The increase of UV peak intensity after H-plasma treatment is also observed, and this could mean that the radiative recombination is strengthened because the hydrogen atoms in the plasma diffuse into the film where they passivate and neutralize the defects and the impurities.

Electro-optical characteristics of MgO protective layer after RF plasma treatment using Ar, $O_2$ and $H_2$ gases

  • Son, Chang-Gil;Lee, H.J.;Jung, J.C.;Park, W.B.;Moon, M.W.;Oh, P.Y.;Jeong, J.M.;Ko, B.D.;Lee, J.H.;Lim, J.E.;Han, Y.G.;Lee, S.B.;Yoo, N.L.;Jeong, S.H.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1211-1214
    • /
    • 2005
  • One of the important problems in recent AC-PDP technology is high efficiency. In this research, we have been investigated electro-optical characteristics of MgO protective layer after radio frequency(RF) plasma treatment using Ar, $O_2$, and $H_2$ gases. The breakdown voltage order was $O_2$ > Ar > Nontreatment > $H_2$. Also, brightness order was $O_2$ > Ar > Non-treatment > $H_2$. In this experiment, the best result was obtained after $O_2-plasma$ treatment.

  • PDF

Study on the $N_2$ Plasma Treatment of Nanostructured $TiO_2$ Film to Improve the Performance of Dye-sensitized Solar Cell

  • Jo, Seul-Ki;Roh, Ji-Hyung;Lee, Kyung-Joo;Song, Sang-Woo;Park, Jae-Ho;Shin, Ju-Hong;Yer, In-Hyung;Park, On-Jeon;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.337-337
    • /
    • 2012
  • Dye sensitized solar cell (DSSC) having high efficiency with low cost was first reported by Gr$\ddot{a}$tzel et al. Many DSSC research groups attempt to enhance energy conversion efficiency by modifying the dye, electrolyte, Pt-coated electrode, and $TiO_2$ films. However, there are still some problems against realization of high-sensitivity DSSC such as the recombination of injected electrons in conduction band and the limited adsorption of dye on $TiO_2$ surface. The surface of $TiO_2$ is very important for improving hydrophilic property and dye adsorption on its surface. In this paper, we report a very efficient method to improve the efficiency and stability of DSSC with nano-structured $TiO_2$. Atmospheric plasma system was utilized for nitrogen plasma treatment on nano-structured $TiO_2$ film. We confirmed that the efficiency of DSSC was significantly dependent on plasma power. Relative in the $TiO_2$ surface change and characteristics after plasma was investigated by various analysis methods. The structure of $TiO_2$ films was examined by X-ray diffraction (XRD). The morphology of $TiO_2$ films was observed using a field emission scanning electron microscope (FE-SEM). The surface elemental composition was determined using X-ray photoelectron spectroscopy (XPS). Each of plasma power differently affected conversion efficiency of DSSC with plasma-treated $TiO_2$ compared to untreated DSSC under AM 1.5 G spectral illumination of $100mWcm^{-2}$.

  • PDF

Improvement of dielectric and interface properties of Al/CeO$_2$/Si capacitor by using the metal seed layer and $N_2$ plasma treatment (금속씨앗층과 $N_2$ 플라즈마 처리를 통한 Al/CeO$_2$/Si 커패시터의 유전 및 계면특성 개선)

  • 임동건;곽동주;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.326-329
    • /
    • 2002
  • In this paper, we investigated a feasibility of cerium oxide(CeO$_2$) films as a buffer layer of MFIS(metal ferroelectric insulator semiconductor) type capacitor. CeO$_2$ layer were Prepared by two step process of a low temperature film growth and subsequent RTA (rapid thermal annealing) treatment. By app1ying an ultra thin Ce metal seed layer and N$_2$ Plasma treatment, dielectric and interface properties were improved. It means that unwanted SiO$_2$ layer generation was successfully suppressed at the interface between He buffer layer and Si substrate. The lowest lattice mismatch of CeO$_2$ film was as low as 1.76% and average surface roughness was less than 0.7 m. The Al/CeO$_2$/Si structure shows breakdown electric field of 1.2 MV/cm, dielectric constant of more than 15.1 and interface state densities as low as 1.84${\times}$10$\^$11/ cm$\^$-1/eV$\^$-1/. After N$_2$ plasma treatment, the leakage current was reduced with about 2-order.

  • PDF

Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

  • Cho, Sang-Jin;Shrestha, Shankar Prasad;Lee, Soon-Bo;Boo, Jin-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.905-907
    • /
    • 2014
  • The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing $O_2$ flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing $O_2$ flow rate. Resistance changes only slightly with different $O_2$ flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. $O_2$ or $N_2$ plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance.