• Title/Summary/Keyword: O$_3$

Search Result 44,151, Processing Time 0.059 seconds

Resistance Modulation of $\textrm{LaCoO}_{3}$ by Ferroelectric Field Effect in $\textrm{LaCoO}_{3}/\textrm{Pb(Zr,Ti)O}_{3}/\textrm{(La,Sr)CoO}_{3}$ Heterostructures ($\textrm{LaCoO}_{3}/\textrm{Pb(Zr,Ti)O}_{3}/\textrm{(La,Sr)CoO}_{3}$다층구조에서의 강유전체 전계효과에 의한 LaCoO$_{3}$의 전항변조)

  • Kim, Seon-Ung;Lee, Jae-Chan
    • Korean Journal of Materials Research
    • /
    • v.7 no.12
    • /
    • pp.1058-1062
    • /
    • 1997
  • 강유전체 전계효과를 관찰하기 위해 LaCoO$_{3}$/Pb(Zr, Ti)O$_{3}$(La, Sr)CoO$_{3}$ 다층구조를 LcOo$_{3}$가 기판 위에 pulsed laser deposition(PLD)법으로 에피택셜하게 성장시켰다. 이러한 다층구조에서는 전도성 채널층으로 Si대신 반도성 LaCoO$_{3}$가 사용 되었다. LaCoO$_{3}$(LCO)의 비저항은 산소 분위기에 의하여 변화되었는데 특히 증착시 산소 분위기에 의존함을 보였다. LCO의 비저항은 0.1-100Ωcm범위에서 변화되었다. LCO층에 유도되는 강유전체 전계효과는 Pb(Zr, Ti)O$_{3}$(PZT)의 분극 상태에 따른 LCO의 저항 변화를 측정함으로써 관찰되었는데 1020$\AA$ 두께를 가진 LCO층에서는 4%의 저항 변화를 얻었으며 680$\AA$의 LCO에서는 9%의 증가된 저항 변화를 얻었다. DC 바이어스(-5V)를 가한 후에는 저항 변화가 45%까지 증가하였다. 이러한 결과는 적당한 비저항을 갖는 LCO를 사용한 LCO/PZT/LSCO다층구조가 강유전체 전계효과 트랜지스터로 사용될 수 있다는 가능성을 제시하고 있다.

  • PDF

A Study on the Recovery of Li2CO3 from Cathode Active Material NCM(LiNiCoMnO2) of Spent Lithium Ion Batteries

  • Wang, Jei-Pil;Pyo, Jae-Jung;Ahn, Se-Ho;Choi, Dong-Hyeon;Lee, Byeong-Woo;Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.296-301
    • /
    • 2018
  • In this study, an experiment is performed to recover the Li in $Li_2CO_3$ phase from the cathode active material NMC ($LiNiCoMnO_2$) in waste lithium ion batteries. Firstly, carbonation is performed to convert the LiNiO, LiCoO, and $Li_2MnO_3$ phases within the powder to $Li_2CO_3$ and NiO, CoO, and MnO. The carbonation for phase separation proceeds at a temperature range of $600^{\circ}C{\sim}800^{\circ}C$ in a $CO_2$ gas (300 cc/min) atmosphere. At $600{\sim}700^{\circ}C$, $Li_2CO_3$ and NiO, CoO, and MnO are not completely separated, while Li and other metallic compounds remain. At $800^{\circ}C$, we can confirm that LiNiO, LiCoO, and $Li_2MnO_3$ phases are separated into $Li_2CO_3$ and NiO, CoO, and MnO phases. After completing the phase separation, by using the solubility difference of $Li_2CO_3$ and NiO, CoO, and MnO, we set the ratio of solution (distilled water) to powder after carbonation as 30:1. Subsequently, water leaching is carried out. Then, the $Li_2CO_3$ within the solution melts and concentrates, while NiO, MnO, and CoO phases remain after filtering. Thus, $Li_2CO_3$ can be recovered.

Preparation and Magnetic Properties of Amorphous Spinel Ferrite (비정질 Spinel Ferrite의 제조와 그 자기적 특성)

  • 김태옥;김창곤
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.1
    • /
    • pp.29-36
    • /
    • 1992
  • The fundamental research about the amorphous ferrite, which is expected as the important material for electronic and information imdustry in future, was carried out in this work. Because the ferromagnetic amorphous ferrites reported recently are very inferior in magnetic properties than the crystalline ferrites, the development of the more ferromagnetic amorphous ferrites is required. In order to obtain the fundamental data for the preparation of amorphous ferrites, the hand-made twin-roller quenching apparatus was used for rapid quenching. Investigation on amorphous ferrite in the system $CaO-Bi_{2}O_{3}-Fe_{2}O_{3}$ has been carried out in the composition of 10-50 mole% CaO, 10-50 mole% $Bi_{2}O_{3}$, 40-70 mole% $Fe_{2}O_{3}$. Large magnetization values were obtained near the composition of the mixture of $BiFeO_{3}$ and $CaFe_{4}O_{7}$. Especially, an amorphous ${(CaO)}_{20}{(Bi_{2}O_{3})_{15}{(Fe_{2}O_{3})}_{65}$ specimen has a magmetization value of about 21.84 emu/g at 0K(10 kOe). Fe $M\"{o}ssbauer$ absorption spectrum indicates that this specimen is compsed of two amorphous phases, antiferromagnetic phase($\alpha$-phase) and ferromagnetic phase($\beta$-phase). Crystallization of this amorphous ferrite was happened in steps-$550^{\circ}C$ and $775^{\circ}C$, then observed crystal phases were perovskite phase of $BiFeO_{3}$ and $Fe_{2}O_{3}$ phase.

  • PDF

Separation of $H_2$/$N_2$ Gas Mixture by SiO$_2$-B$_2$O$_3$ Membrane (SiO$_2$-B$_2$O$_3$ 막에 의한 수소/질소 혼합기체 분리)

  • Kang Tae-Bum;Park Jin-Ho
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.312-319
    • /
    • 2004
  • The porous SiO$_2$-B$_2$O$_3$ membrane was prepared from Si(OC$_2$$H_5$)$_4$-($CH_3$O)$_3$B-C$_2$$H_5$OH-$H_2O$ system by sol-gel method. In order to investigate the characteristics of this membrane, we examined that using BET, IR spectrophotometer, X-ray diffractometer, SEM and TEM. At $700^{\circ}C$, the surface area of SiO$_2$-B$_2$O$_3$ membrane was 354.398 $m^2$/, the median pore diameter was 0.0048 ${\mu}{\textrm}{m}$, and the particle size of SiO$_2$-B$_2$O$_3$ membrane was 7 nm. The separation properties of the gas mixture ($H_2$/$N_2$) through the SiO$_2$-B$_2$O$_3$ membrane was studied as a function of pressure. The real separation factor($\alpha$) of SiO$_2$-B$_2$O$_3$ membrane for $H_2$/$N_2$ gas mixture was 4.68 at 155.15 cmHg and $25^{\circ}C$. The real separation factor($\alpha$), head separation factor($\beta$) and tail separation factor((equation omitted)) were increased as the pressure of permeation cell increased.

Control of Microstructures and Properties of Composites of the $Al_2O_3-ZrO_2-Spinel$ System: II. $Al_2O_3-ZrO_2-Spinel$ Composites Prepared by the Solution Infiltration Method ($Al_2O_3-ZrO_2-Spinel$계 복합체의 미세구조 및 물성제어: II. 용액침투법에 의한 $Al_2O_3-ZrO_2-Spinel$ 복합소결체)

  • 현상훈;송원선
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.10
    • /
    • pp.811-818
    • /
    • 1993
  • Al2O3/ZrO2-Spinel composites were prepared by infiltrating magnesium sulfate solution into the porous preform made from Al2O3-20wt% ZrO2 composite powders derived through an emulsion route. The microstructure and composition of the modified composites could be controlled by manipulating the presingtering temperature of the preform, infiltration time, and so on. It was found that spinel phases were concentrated near the surface than in the interior of the Al2O3/ZrO2-Spinel composites infiltrated for 6hrs, while spinel phases were uniformly distributed in the comosites infiltrated for 2 days. The relative density and fracture toughness of the composite infiltrated for 6 hrs were 98.6% and 7.2MN/m3/2, respectively.

  • PDF

Properties of the $\beta-SiC-TiB_2$ Composites with $Al_2O_3+Y_2O_3$ additives ($Al_2O_3+Y_2O_3를 첨가한 {\beta}-SiC-TiB_2$ 복합체의 특성)

  • Yim, Seung-Hyuk;Shin, Yong-Deok;Ju, Jin-Young;Yoon, Se-Won;Song, Joon-Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.394-399
    • /
    • 2000
  • The mechanical and electrical properties of pressed and annealed $\beta-SiC-TiB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_2O_3+Y_2O_3$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), TiB2, and (Al5Y3O12). Reaction between Al2O3 and $Y_2O_3$ formed YAG but the relative density decreased with increasing $Al_2O_3+Y_2O_3$ contents. The Flexural strength showed the value of 458.9 MPa for composites added with 4 wt% $Al_2O_3+Y_2O_3$ additives at room temperatures. Owing to crack deflection and crack bridging, the fracture toughness showed 6.2, 6.0 and 6.6 MPa.m1/2 for composites added with 4, 8 and 12 wt% Al2O3+Y2O3 additives respectively at room temperature. The resistance temperature coefficient showed the value of $3.6\times10^{-3},\; 2.9\times10^{-3}\; and\; 3.0\times10^{-3} /^{\circ}C$$^{\circ}C$ for composite added with 4, 8 and 12 wt% $Al_2O_3+Y_2O_3$additives respectively at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C\; to\; 700^{\circ}$.

  • PDF

Wear and Friction characteristics of $Cr_2$$O_2$ coating included $SiO_2$ and $TiO_2$ ($SiO_2$$TiO_2$가 첨가된 $Cr_2$$O_3$용사코팅의 마찰 .마멸 특성)

  • 서보현;김태형;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.69-77
    • /
    • 2001
  • Wear and Friction characteristics of plasma-sprayed Cr$_2$O$_3$ coating and Cr$_2$O$_3$ coating included SiO$_2$ and TiO$_2$ against SiC ball have been investigated under different loads. Worn surfaces were observed by SEM and worn surfaces were analyzed by EDS. The Friction coefficient and the Wear resistance of Cr$_2$O$_3$-5SiO$_2$-3TiO$_2$coating was less than that of Cr$_2$O$_3$ coating. The main mechanisms were plastic deformation and brittle fracture. The film on surface were made by plastic deformation and compacted wear debris. This film protect wear of coating

  • PDF

Microstructure and Characteristics of Ag-SnO2-Bi2O3 Contact Materials by Powder Compaction (분말성형법으로 제조된 Ag-SnO2-Bi2O3 접점소재의 미세조직 및 특성)

  • Lee, Jin Kyu
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.41-46
    • /
    • 2022
  • In this study, we report the microstructure and characteristics of Ag-SnO2-Bi2O3 contact materials using a controlled milling process with a subsequent compaction process. Using magnetic pulsed compaction (MPC), the milled Ag-SnO2-Bi2O3 powders have been consolidated into bulk samples. The effects of the compaction conditions on the microstructure and characteristics have been investigated in detail. The nanoscale SnO2 phase and microscale Bi2O3 phase are well-distributed homogeneously in the Ag matrix after the consolidation process. The successful consolidation of Ag-SnO2-Bi2O3 contact materials was achieved by an MPC process with subsequent atmospheric sintering, after which the hardness and electrical conductivity of the Ag-SnO2-Bi2O3 contact materials were found to be 62-75 HV and 52-63% IACS, respectively, which is related to the interfacial stability between the Ag matrix, the SnO2 phase, and the Bi2O3 phase.

Compositional Effects on Thermal and Electrical Properties of Dielectric Glass Paste

  • Kim, Teock-Nam;Lee, Jea-Yeol;Kim, Hyung-Sun;Hu, Jeung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.95-96
    • /
    • 2000
  • The effect of $Al_2O_3$ on the dielectric constant and the coefficient of thermal expansion of lead borosilicate glasses for the application of PDP glass paste was investigated. Measurements were made theoretically by using empirical equations on the composition of the of glasses in which the $PbO/Al_2O_3$, $B_2O_3/Al_2O_3$ and $SiO_2/Al_2O_3$ ratios were systematically varied. As a result, with increasing $PbO/Al_2O_3$ the thermal expansion coefficient and the dielectric constant noticeably increased, while the change of $B_2O_3/Al_2O_3$ and $SiO_2/Al_2O_3$ ratios did not affect those properties of the glasses.

  • PDF

Electrical and optical properties of Al and F doped ZnO transparent conducting film by sol-gel method (Sol-gel법에 의한 Al과 F가 첨가된 ZnO 투명전도막의 전기 및 광학적 특성)

  • Lee, Seung-Yup;Lee, Min-Jae;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.2
    • /
    • pp.59-65
    • /
    • 2006
  • Al-doped and F-doped ZnO (ZnO : Al & ZnO : F) thin films were coated onto glass substrate by sol-gel method. These films showed c-axis orientation in common, but different I(002)/[I(002) + I(101)] and FWHM (full width at half-maximum). In particular, the grain size of the ZnO : Al films decreased with the increase in the Al-doping concentration, while for the ZnO : F films the grain siae increased up to F 3 at% and then decreased. For the electrical properties, Hall effect measurement was used. The resistivity of the ZnO : Al films and the ZnO : F films were, respectively, $2.9{\times}10^{-2}{\Omega}cm$ at Al 1 at% and $3.3{\times}10^{-1}{\Omega}cm$ at F 3 at%. Moreover compared with ZnO:Al films, ZnO:F films have lower carrier concentration (ZnO : Al $4.8{\times}10^{18}cm^{-3}$, ZnO : F $3.9{\times}10^{16}cm^{-3}$) and higher mobility (ZnO : Al $45cm^2/Vs$, ZnO : F $495cm^2/Vs$). For average optical transmittances, ZnO : Al thin films have $86{\sim}90%$ and ZnO : F films have $77{\sim}85%$ comparatively low.