• Title/Summary/Keyword: Nyquist

Search Result 280, Processing Time 0.023 seconds

A Study Absolute Position Estimation of Sound Source (3차원 음향홀로그래픽을 이용한 음원위치 추정에 관한 연구)

  • Kim, Chun-Duk;Sim, Dong-Youn;Jang, Bee;Lee, Chai-Bong;Cha, Kyung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.76-82
    • /
    • 1997
  • The paper describes simulations and experimental results using a measuring system which utilizes the acoustic holographic method in order to exactly estimate an absolute position of a sound source. The measuring surface is installed to satisfy with a far field to the sound source and is composed of linear arrayed seven microphones. A measurement is simultaneously recorded by a reference microphone setting up a neighbour sound source and the linear arrayed seven microphones which are moved to the same interval. An absolute position of sound source is estimated by the cross-spectrum method to the received sounds between a reference and the measuring microphones. Phase differences of each microphone and time delays during scanning are compensated to the reference microphone and the measuring time of the first column. An optimal interval for each microphone in the measuring surface is decided by a numerical simulation. A source signal makes use of a sinusoid, and S/N ratio is 30dB in the experiment. The optimal microphone's interval in the simulation and the experiment is decided in order to satisfy with the Nyquist space sampling condition related to the wave length of 2kHz sinusoid. Mainlobe width of a estimated 3D hologram in the case of 2kHz source signal is decreased to 87% and 30% in comparison to 500Hz and 1kHz, and then a valid of simulation results is confirmed. Therefore, we verified a utilization of the study for a sound source estimation using 3ㅇ acoustic holographic method.

  • PDF

Gas Sensing Properties and Mechanism of the $\textrm{SnO}_2-\textrm{In}_2\textrm{O}_3$ System Prepared by Coprecipitation Method (공침법으로 제조된 $\textrm{SnO}_2-\textrm{In}_2\textrm{O}_3$ 계의 가스감응특성 및 감응기구)

  • Yun, Gi-Hyeon;Im, Ho-Yeon;Gwon, Cheol-Han;Yun, Dong-Hyeon;Kim, Seung-Ryeol;Hong, Hyeong-Gi;Lee, Gyu-Jeong
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.813-818
    • /
    • 1998
  • Ultrafine powders of $\textrm{In}_{2}\textrm{O}_{3}$-doped $\textrm{SnO}_{2}$ were synthesized by a coprecipitation method and the effects of pH value and the amount of In2Q addition on particle size were investigated. The influence of pH value on particle size could be negligible, whereas the amount of $\textrm{In}_{2}\textrm{O}_{3}$ has influenced on particle size and specific surface area. The gas sensitivity to hydrocarbOn($\textrm{C}_{3}\textrm{H}_{8}$, $\textrm{C}_{4}\textrm{H}_{10}$) increased with $\textrm{In}_{2}\textrm{O}_{3}$ addition and reached a maximum at 3wt.% addition. From the results of impedance analysis and I-V characteristics. it was showed that the agglomeration structure of particles and the boundaries between agglomerates were the important factors to determine the gas sensing mechanism.

  • PDF

A Quantitative Method for the Assessment of Myocardial Function using the Polar Analysis of Tc-99m-MIBI Myocardial SPECT (Tc-99m-MIBI 심근 SPECT 극성지도 분석에 의한 심근 기능의 정량적 평가)

  • Kwark, Cheol-Eun;Lee, Dong-Soo;Yeo, Jung-Suk;Lee, Kyung-Han;Chung, June-Key;Lee, Myung-Chul;Seo, Joung-Don;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.28 no.2
    • /
    • pp.172-176
    • /
    • 1994
  • As the Tc-99m-MIBI myocardial SPECT demonstrated wide application in the diagnosis of myocardial function, the quantitative and severity-dependent information is currently re quired. In this study, we proposed a computerized method for scoring the fixed defects in terms of extent-weighted severity and for identifying the reversibility in ischemic regions. At the first stage of this method, the transverse slices were reconstructed with 0.4 Nyquist freq. and order 5 Butterworth filter. From the oblique/sagittal slices, maximal count per pixel circumferential profiles were extracted for each sector, and then stress/redist. polar maps were normalized and plotted. For reversibility, the stress polar map was subtracted from the de-layed image and positive-valued pixels were categorized into three grades. The extent-weight-ed severity scores were calculated using the assigned grades and their number of pixels. This procedure was done automatically and the reversibility and severity scores were produced for each of the coronary territories (LAD, RCA, LCX) or any combination of these. Clinical ap-plication has shown that the changes In reversibility scores after PTCA were correlated linearly with the pre PTCA scores(r>0.8) in postinfarct cases as well as in angina, and severity scores of persistent defects in stress/rest SPECT study matched to the regional ejection fraction and visual analysis of regional wall motion of gated blood pool scan(r>0.6). We conclude that the computerized severity scoring method for the analysis of myocardial SPECT could be useful in the assessment of the myocardial ischemia and fixed defect.

  • PDF

1V 1.6-GS/s 6-bit Flash ADC with Clock Calibration Circuit (클록 보정회로를 가진 1V 1.6-GS/s 6-bit Flash ADC)

  • Kim, Sang-Hun;Hong, Sang-Geun;Lee, Han-Yeol;Park, Won-Ki;Lee, Wang-Yong;Lee, Sung-Chul;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1847-1855
    • /
    • 2012
  • A 1V 1.6-GS/s 6-bit flash analog-to-digital converter (ADC) with a clock calibration circuit is proposed. A single track/hold circuit with a bootstrapped analog switch is used as an input stage with a supply voltage of 1V for the high speed operation. Two preamplifier-arrays and each comparator composed of two-stage are implemented for the reduction of analog noises and high speed operation. The clock calibration circuit in the proposed flash ADC improves the dynamic performance of the entire flash ADC by optimizing the duty cycle and phase of the clock. It adjusts the reset and evaluation time of the clock for the comparator by controlling the duty cycle of the clock. The proposed 1.6-GS/s 6-bit flash ADC is fabricated in a 1V 90nm 1-poly 9-metal CMOS process. The measured SNDR is 32.8 dB for a 800 MHz analog input signal. The measured DNL and INL are +0.38/-0.37 LSB, +0.64/-0.64 LSB, respectively. The power consumption and chip area are $800{\times}500{\mu}m2$ and 193.02mW.

Environmental Test Results of a Flight Model of a Compact Imaging Spectrometer for a Microsatellite STSAT-3 (과학기술위성3호 소형영상분광기 발사모델 환경시험 결과)

  • Lee, Sang-Jun;Kim, Jung-Hyun;Lee, Jun-Ho;Lee, Chi-Won;Jang, Tae-Sung;Kang, Kyung-In
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.4
    • /
    • pp.184-190
    • /
    • 2011
  • A compact imaging spectrometer (COMIS) was developed for a microsatellite STSAT-3. The satellite is now rescheduled to be launched into a low sun-synchronous Earth orbit (~700 km) by the end of 2012. Its main operational goal is the imaging of the Earth's surface and atmosphere with ground sampling distance of 27 m and 2 - 15 nm spectral resolution over visible and near infrared spectrum (0.4 - 1.05 ${\mu}m$). A flight model of COMIS was developed following an engineering model that had successfully demonstrated hyperspectral imaging capability and structural rigidity. In this paper we report the environmental test results of the flight model. The mechanical stiffness of the model was confirmed by a small shift of the natural frequency i.e., < 1% over 10 gRMS random vibration test. Electrical functions of the model were also tested without showing any anomalies during and after vacuum thermal cycling test with < $10^{-5}$ torr and $-30^{\circ}C\;-\;35^{\circ}C$. The imaging capability of the model, represented by a modulation transfer function (MTF) value at the Nyquist frequency, was also kept unvaried after all those environmental tests.

A Study on Consistency of Numerical Solutions for Wave Equation (파동방정식 수치해의 일관성에 관한 연구)

  • Pyun, Sukjoon;Park, Yunhui
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.136-144
    • /
    • 2016
  • Since seismic inversion is based on the wave equation, it is important to calculate the solution of wave equation exactly. In particular, full waveform inversion would produce reliable results only when the forward modeling is accurately performed because it uses full waveform. When we use finite-difference or finite-element method to solve the wave equation, the convergence of numerical scheme should be guaranteed. Although the general proof of convergence is provided theoretically, the consistency and stability of numerical schemes should be verified for practical applications. The implementation of source function is the most crucial factor for the consistency of modeling schemes. While we have to use the sinc function normalized by grid spacing to correctly describe the Dirac delta function in the finite-difference method, we can simply use the value of basis function, regardless of grid spacing, to implement the Dirac delta function in the finite-element method. If we use frequency-domain wave equation, we need to use a conservative criterion to determine both sampling interval and maximum frequency for the source wavelet generation. In addition, the source wavelet should be attenuated before applying it for modeling in order to make it obey damped wave equation in case of using complex angular frequency. With these conditions satisfied, we can develop reliable inversion algorithms.

Optical Design of a Subminiature Catadioptric Omnidirectional Optical System with an LED Illumination System for a Capsule Endoscope (LED 조명계를 결합한 캡슐내시경용 초소형 반사굴절식 전방위 광학계의 설계)

  • Moon, Tae Sung;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.2
    • /
    • pp.68-78
    • /
    • 2021
  • A subminiature catadioptric omnidirectional optical system (SCOOS) with 2 mirrors, 6 plastic aspherical lenses, and an illumination system of 6 light emitting diodes, to observe the 360° panoramic image of the inner intestine, is optically designed and evaluated for a capsule endoscope. The total length, overall length, half field of view (HFOV), and F-number of the SCOOS are 14.3 mm, 8.93 mm, 51°~120°, and 3.5, respectively. The optical system has a complementary metal-oxide-semiconductor sensor with 0.1 megapixels, and an illumination system of 6 light-emitting diodes (LEDs) with 0.25 lm to illuminate on the 360° side view of the intestine along the optical axis. As a result, the spatial frequency at the modulation transfer function (MTF) of 0.3, the depth of focus, and the cumulative probability of tolerance at the Nyquist frequency of 44 lp/mm and MTF of 0.3 of the optimized optical system are obtained as 130 lp/mm, -0.097 mm to +0.076 mm, and 90.5%, respectively. Additionally, the simulated illuminance of the LED illumination system at the inner surface of the intestine within HFOV, at a distance of 15.0 mm from the optical axis, is from a minimum of 315 lx to a maximum of 725 lx, which is a sufficient illumination and visibility.

Optical Design of a Modified Catadioptric Omnidirectional Optical System for a Capsule Endoscope to Image Simultaneously Front and Side Views on a RGB/NIR CMOS Sensor (RGB/NIR CMOS 센서에서 정면 영상과 측면 영상을 동시에 결상하는 캡슐 내시경용 개선된 반사굴절식 전방위 광학계의 광학 설계)

  • Hong, Young-Gee;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.286-295
    • /
    • 2021
  • A modified catadioptric omnidirectional optical system (MCOOS) using an RGB/NIR CMOS sensor is optically designed for a capsule endoscope with the front field of view (FOV) in visible light (RGB) and side FOV in visible and near-infrared (NIR) light. The front image is captured by the front imaging lens system of the MCOOS, which consists of an additional three lenses arranged behind the secondary mirror of the catadioptric omnidirectional optical system (COOS) and the imaging lens system of the COOS. The side image is properly formed by the COOS. The Nyquist frequencies of the sensor in the RGB and NIR spectra are 90 lp/mm and 180 lp/mm, respectively. The overall length of 12 mm, F-number of 3.5, and two half-angles of front and side half FOV of 70° and 50°-120° of the MCOOS are determined by the design specifications. As a result, a spatial frequency of 154 lp/mm at a modulation transfer function (MTF) of 0.3, a depth of focus (DOF) of -0.051-+0.052 mm, and a cumulative probability of tolerance (CPT) of 99% are obtained from the COOS. Also, the spatial frequency at MTF of 170 lp/mm, DOF of -0.035-0.051 mm, and CPT of 99.9% are attained from the front-imaging lens system of the optimized MCOOS.

A 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS ADC for Digital Multimedia Broadcasting applications (DMB 응용을 위한 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS A/D 변환기)

  • Cho, Young-Jae;Kim, Yong-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.37-47
    • /
    • 2006
  • This work proposes a 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS A/D Converter (ADC) for high-performance wireless communication systems such as DVB, DAB and DMB simultaneously requiring low voltage, low power, and small area. A two-stage pipeline architecture minimizes the overall chip area and power dissipation of the proposed ADC at the target resolution and sampling rate while switched-bias power reduction techniques reduce the power consumption of analog amplifiers. A low-power sample-and-hold amplifier maintains 10b resolution for input frequencies up to 60MHz based on a single-stage amplifier and nominal CMOS sampling switches using low threshold-voltage transistors. A signal insensitive 3-D fully symmetric layout reduces the capacitor and device mismatch of a multiplying D/A converter while low-noise reference currents and voltages are implemented on chip with optional off-chip voltage references. The employed down-sampling clock signal selects the sampling rate of 25MS/s or 10MS/s with a reduced power depending on applications. The prototype ADC in a 0.13um 1P8M CMOS technology demonstrates the measured DNL and INL within 0.42LSB and 0.91LSB and shows a maximum SNDR and SFDR of 56dB and 65dB at all sampling frequencies up to 2SMS/s, respectively. The ADC with an active die area if $0.8mm^2$ consumes 4.8mW at 25MS/s and 2.4mW at 10MS/s at a 1.2V supply.

Athermalization and Narcissus Analysis of Mid-IR Dual-FOV IR Optics (이중 시야 중적외선 광학계 비열화·나르시서스 분석)

  • Jeong, Do Hwan;Lee, Jun Ho;Jeong, Ho;Ok, Chang Min;Park, Hyun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.3
    • /
    • pp.110-118
    • /
    • 2018
  • We have designed a mid-infrared optical system for an airborne electro-optical targeting system. The mid-IR optical system is a dual-field-of-view (FOV) optics for an airborne electro-optical targeting system. The optics consists of a beam-reducer, a zoom lens group, a relay lens group, a cold stop conjugation optics, and an IR detector. The IR detector is an f/5.3 cooled detector with a resolution of $1280{\times}1024$ square pixels, with a pixel size of $15{\times}15{\mu}m$. The optics provides two stepwise FOVs ($1.50^{\circ}{\times}1.20^{\circ}$ and $5.40^{\circ}{\times}4.23^{\circ}$) by the insertion of two lenses into the zoom lens group. The IR optical system was designed in such a way that the working f-number (f/5.3) of the cold stop internally provided by the IR detector is maintained over the entire FOV when changing the zoom. We performed two analyses to investigate thermal effects on the image quality: athermalization analysis and Narcissus analysis. Athermalization analysis investigated the image focus shift and residual high-order wavefront aberrations as the working temperature changes from $-55^{\circ}C$ to $50^{\circ}C$. We first identified the best compensator for the thermal focus drift, using the Zernike polynomial decomposition method. With the selected compensator, the optics was shown to maintain the on-axis MTF at the Nyquist frequency of the detector over 10%, throughout the temperature range. Narcissus analysis investigated the existence of the thermal ghost images of the cold detector formed by the optics itself, which is quantified by the Narcissus Induced Temperature Difference (NITD). The reported design was shown to have an NITD of less than $1.5^{\circ}C$.