• Title/Summary/Keyword: Nylon Bag Technique

Search Result 31, Processing Time 0.022 seconds

A Rapid Technique for Determination of Total Disappearance of Dietary Nitrogen in the Digestive Tract Using Washed Fecal Sample after Freezing and Thawing

  • Kamel, H.E.M.;El-Waziry, A.;Sekine, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.3
    • /
    • pp.313-316
    • /
    • 2000
  • Three Holstein steers, fitted with ruminal and duodenal cannulas, were used in a replicated $3{\times}3$ Latin square design to determine the digestibility of dietary nitrogen in total digestive tract by three methods, 1) mobile nylon bag (MNB); 2) total fecal collection (TFC); and 3) washed fecal sample after freezing and thawing through a sieve with a pore size of $45{\mu}m$ (WFS). A basal diet of oaten hay-barley was supplemented with one of the following protein sources; soybean meal, fish meal or blood meal. Steers were fed at a level of 2% of body weight. The experimental diets were contained approximately 1.85% nitrogen. There were no differences (p>0.05) among the diets on DM, NDF and nitrogen disappearances, and the diet results were pooled to assess the methods. Total tract disappearances of dry matter and neutral detergent fiber were 61.6, 71.1 and 78.9 and 25.3, 63.2 and 64.6 for MNB, TFC and WFS methods, respectively. The lower digestibility of DM and NDF in the MNB method could be a result of low ruminal incubation time. The TFC method had the lower (p<0.05) determination of nitrogen disappearance in the total digestive tract than the MNB and WFS methods. On the other hand, nitrogen disappearance in the total digestive tract determined by the WFS technique was comparable to that in MNB technique, as there was no significant difference (p>0.05) between the methods. It is shown that the disappearance of dietary nitrogen in the total digestive tract could be estimated in the intact animals by using washed fecal sample prior to freezing and thawing.

Effects of Heat Treatment of Three Animal by-products on Ruminal Degradation Characteristics and Intestinal Availability of Crude Protein (동물성 부산물 사료 세 종류에 대한 열처리가 조단백질의 반추위내 분해특성 및 하부장기내 이용성에 미치는 영향)

  • Moon, Y.H.;Lee, S.C.;Kim, B.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.105-112
    • /
    • 2002
  • In order to investigate the effects of heat treatment of three animal by-products(feather meal, tallow meal, viscera meal) on in situ ruminal degradation characteristics and gastrointestinal availability of dietary crude protein(CP), three ruminally and duodenally cannulated dry Holstein cows were employed. Cows were fed a diet containing 60% concentrate and 40% orchard grass hay, and had free access to water and mineral block. Experimental feeds were processed for 4 hr at 149$^{\circ}C$ in a forced-air oven, and were passed through a 1-mm screen. Degradation kinetics of feed protein in the rumen were fitted to an exponential type model, and intestinal availability was estimated by the mobile nylon bag technique. Effective CP degradabilities in the rumen for feather meal, tallow meal and viscera meal were 30.2%, 75.0% and 56.4% at 5% passage rate per hour(k=0.05), respectively. In addition, heat treatment increased effective ruminal CP degradability on feather meal and viscera meal treatments, whereas decreased in tallow meal treatment(P$<$0.05). Gastrointestinal CP disappearances of feather meal, tallow meal and viscera meal were 56.2%, 18.6%, and 37.9%, respectively. In addition, heat treatment decreased the gastrointestinal CP disappearance on feather meal and viscera meal treatment, but increased in tallow meal treatment(P$<$0.05). Intestinal availability of rumen undegradable protein(A-UDP) was 80.4% for feather meal, 83.8% for tallow meal and 86.9% for viscera meal. In addition, heat treatment increased A-UDP on feather meal and tallow meal treatment, 94.0% and 91.3%, respectively, but decreased on viscera meal treatment, 76.5%(P$<$0.05).

Determination of Optimal Conditions of Pressure Toasting on Legume Seeds for Dairy Deed Industry : I. Effects of Pressure Toasting on Nutritive Values of Lupinus albus in Lactating Dairy Cows

  • Yu, P.;Goelema, J.O.;Tamminga, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1205-1214
    • /
    • 1999
  • Whole lupinus albus seeds were pressure toasted at temperatures of 100, 118 and $136^{\circ}C$ for 3, 7, 15 and 30 min to study rumen degradation and post-rumen digestion and to determine optimal heating conditions for the Dutch dairy feed industry. In sacco nylon bag and mobile bag techniques were employed for rumen and intestine incubations to determine ruminal degradation characteristics and intestinal digestion of crude protein (CP) in 4 lactation rumen cannulated and 4 lactating intestinal cannulated Dutch dairy cows fed 47% hay and 53% concentrate according to Dutch dairy requirements. Measured rumen degradation characteristics were soluble fraction (S), undegradable fraction (U), potentially degradable fraction (D), lag time (T0) and rate of degradation (Kd) of insoluble but degradable fraction. Percentage bypass feed protein (BCP), ruminal microbial protein synthesized based on available nitrogen (N_MP) and that based on available energy (E_MP), true protein supplied to the small intestine (TPSI), truly absorbed BCP (ABCP), absorbed microbial protein (AVP) in the small intestine, endogenous protein losses in the digestion (ENDP), true digested protein in the small intestine (TAP or DVE in Dutch) and degraded protein balance (PDB or OEB in Dutch) were totally evaluated using the new Dutch DVE/OEB System. Pressure toasting decreased (p<0.001) rumen degradability of CP. It reduced S (p<0.05) and Kd (p=0.06), increased D (p<0.05) and U (p<0.01) but did not alter T0 (p>0.05), thus resulting in dramatically increased BCP (p<0.001) with increasing time and temperature from 73.7 (raw) up to 182.5 g/kg DM ($136^{\circ}C/15min$). Although rumen microbial protein synthesized based on available energy (E_MP) was reduced, true protein (microbial and bypass feed protein) supplied to the small intestine (TPSI) was increased (p<0.001) from 153.1 (raw) to 247.6 g/kg DM ($136^{\circ}C/15min$). Due to digestibility of BCP in the intestine not changing (p>0.05) average 87.8%, the absorbed BCP increased (p<0.001) from 62.3 (raw) to 153.7 g/kg DM ($136^{\circ}C/15min$). Therefore DVE value of true digested protein in the small intestine was significantly increased (p<0.001) from 118.9 (raw) to 197.0 g/kg DM ($136^{\circ}C/15min$) and OEB value of degraded protein balance was significantly reduced (p<0.001) from 147.2 (raw) to 63.1 g/kg DM ($136^{\circ}C/15min$). It was concluded that pressure toasting was effective in shifting degradation of CP of lupinus albus from the rumen to small intestine without changing intestinal digestion. Further studies are required on the degradation and digestion of individual amino acids and on the damaging effects of processing on amino acids, especially the first limiting amino acids.

Studies on In-Situ Digestibility and Feed Value of Rice as Influenced by Ripening Stage (벼의 생육시기가 한우 반추위 소화율과 사료가치에 미치는 영향)

  • Lee, Sung Cheol
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.4
    • /
    • pp.345-350
    • /
    • 1998
  • In order to evaluate the feed value of rice straw as influenced by ripening stage, and to determine the effects of chemical treatments and ensiling on its feeding value, in situ studies using a rumen fistulated Korean cow nylon bag technique, and digestion trials with sheep were conducted. Experiments were conducted at the Experimental Farms, Woosuk University, Wanju in 1998. The results obtained are summarized as follows; 1. The contents of crude protein and crude fat were decreased(P<0.05), while those of crude fiber and crude ash were increased as the ripening of rice straw progressed. The content of NDF was not affected by the ripening stage. After the yellow stage hemicellulose was remarkably decreased while cellulose and lignin were increased. 2. Degradation of rice straw NDF in the rumen was most rapid when at the heading stage, but degradation of straws after the milky stage were similar each other. Degradation of rice straw ADF, on the other hand, did not show any difference with advancing ripening stage. In Conclusion, the change of chemical composition and degradation rate of rice straw in the rumen under the different ripening stage, it can be concluded that the lignification of rice straw was accelerated after the heading stage.

  • PDF

Effects of Synchronizing the Rate of Dietary Energy and Nitrogen Release on Ruminal Fermentation, Microbial Protein Synthesis, Blood Urea Nitrogen and Nutrient Digestibility in Beef Cattle

  • Chumpawadee, Songsak;Sommart, K.;Vongpralub, T.;Pattarajinda, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.181-188
    • /
    • 2006
  • The objective of this research was to determine the effects of synchronizing the rate of dietary energy and nitrogen release on: ruminal fermentation, microbial protein synthesis, blood urea nitrogen, and nutrient digestibility in beef cattle. Four, two-and-a-half year old Brahman-Thai native crossbred steers were selected for the project. Each steer was fitted with a rumen cannula and proximal duodenal cannula. The steers were then randomly assigned in a $4{\times}4$ Latin square design to receive four dietary treatments. Prior to formulation of the dietary treatments, feed ingredients were analyzed for chemical composition and a nylon bag technique was used to analyze the treatments various ingredients for degradability. The treatments were organized in four levels of a synchrony index (0.39, 0.50, 0.62 and 0.74). The results showed that dry matter digestibility trend to be increased (p<0.06), organic matter and acid detergent fiber digestibility increased linearly (p<0.05), while crude protein and neutral detergent fiber digestibility were not significantly different (p>0.05). Higher concentration and fluctuation of ruminal ammonia and blood urea were observed in the animal that received the lower synchrony index diets. As the levels of the synchrony index increased, the concentrations of ruminal ammonia nitrogen and blood urea nitrogen, at the 4 h post feeding, decreased linearly (p<0.05). Total volatile fatty acid and bacteria populations at the 4 h post feeding increased linearly (p<0.05). Microbial protein synthesis trend to be increase (p<0.08). The results of this research indicate that synchronizing the rate of degradation of dietary energy and nitrogen release improves ruminal fermentation, microbial protein synthesis and feed utilization.

Comparison of In situ Dry Matter Degradation with In vitro Gas Production of Oak Leaves Supplemented with or without Polyethylene Glycol (PEG)

  • Ozkan, C. Ozgur;Sahin, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1120-1126
    • /
    • 2006
  • Dry matter (DM) degradation of leaves from Quercus cercis, Quercus libari, Quercus branti, and Quercus coccifera was determined using two different techniques: (i) in vitro gas production and (ii) the nylon bag degradability technique. In vitro gas production in the presence or absence of PEG and in situ DM disappearance were measured at 3, 6, 12, 24, 48, 72 and 96 h. In situ and in vitro DM degradation kinetics were described using the equation y = a+b ($1-e^{-ct}$). At all incubation times leaves from Quercus branti incubated with or without PEG gave significantly higher gas production than the other oak leaves except for 3 and 6 h incubation when leaves from Quercus branti without PEG supplementation only gave higher gas production than Quercus cercis and Quercus coccifera. At all incubation times except at 3, 6 and 12 h the DM disappearance from Quercus branti was significantly higher than the other species. Generally, PEG supplementation considerably increased the gas production at all incubation times and estimated parameters such as gas production rate ($c_{gas}$), gas production (ml) from the quickly soluble fraction ($a_{gas}$), gas production (b) from the insoluble fraction, potential gas production (a+b). However, all oak leaves did not give the same response to the PEG supplementation. Although the increase in gas production at 96 h incubation time was 8.9 ml for Quercus libari the increase was 5.5 ml for Quercus coccifera. It was concluded that except at early incubation times the relationships between the two methodologies seem to be sufficiently strong to predict degradability parameters from gas production parameters obtained in the presence or absence of PEG.

Influence of Dry Roasting on Rumen Protein Degradation Characteristics of Whole Faba Bean (Vicia faba) in Dairy Cows

  • Yu, P.;Holmes, J.H.G.;Leury, B.J.;Egan, A.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.1
    • /
    • pp.35-42
    • /
    • 1998
  • Whole faba beans (WFB) were dry roasted at different temperatures (110, 130, $150^{\circ}C$) for 15, 30, 45 minutes to determine the optimal heating conditions of time and temperature to increase nutritional value. Ruminant degradation characteristics of crude protein (CP) of WFB were determined by the nylon bag incubation technique in dairy cows fed 60% hay and 40% concentrate. Measured characteristics of crude protein (CP) were soluble (washable) fraction (S), undegradable fraction (U), lag time (T0), potentially degradable fraction (D) and the rate of degradation (Kd) of insoluble but degradable fraction. Based on measured characteristics, percentage bypass crude protein (%BCP) and bypass crude protein (BCP in g/kg) were calculated. Degradability of CP was reduced by dry roasting (p < 0.01). S was reduced rapidly with increasing time and temperature, from 49.0% in the raw WFB (RWFB) to 26.3% in $150^{\circ}C/45$ min. D varied from 50.7% in RWFB to 73.7% in $150^{\circ}C/45^{\prime}$. U varied from 0% in $130^{\circ}C/45^{\prime}$, $150^{\circ}/30^{\prime}$ and $150^{\circ}/45^{\prime}$ to 0.66% in $110^{\circ}/45^{\prime}$ (0.24% for the RWFB). Lag time (T0) varied from 1.58 h in $130^{\circ}C/30^{\prime}$ to 2.40 h in $150^{\circ}C/45^{\prime}$ (1.87 h for RWFB). Kd varied from 24.2% in the $110^{\circ}C/30^{\prime}$ to 4.3% in $150^{\circ}C/45^{\prime}$ (21.4% for the RWFB). Kd was significantly reduced with time and temperature. All these effects resulted in increasing % BCP from 8.9% in the $110^{\circ}C/45^{\prime}$, 11.3% in the RWFB to 43.1% in the $150^{\circ}C/45$. Therefore BCP increased from 31.3 and 39.9 to 148.4 g/kg respectively. Both %BCP and BCP at $150^{\circ}C/45$ increased nearly 4 times over the raw faba beans. The effects of dry roasting temperature and time on %BCP and BCP seemed to be linear up to the highest values tested. Therefore no optimal dry roasting conditions of time and temperature could be determined at this stage. It was concluded that dry roasting was effective in shifting crude protein degradation from rumen to intestine to reduce unnecessary nitrogen (N) loss in the rumen. To determine the optimal treatment, the digestibility of each treatment should be measured in the next trial using mobile bags technique.

Metabolisable Energy, In situ Rumen Degradation and In vitro Fermentation Characteristics of Linted Cottonseed Hulls, Delinted Cottonseed Hulls and Cottonseed Linter Residue

  • Bo, Y.K.;Yang, H.J.;Wang, W.X.;Liu, H.;Wang, G.Q.;Yu, X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.2
    • /
    • pp.240-247
    • /
    • 2012
  • Dietary supplementation with conventional linted cottonseed hulls (LCSH) is a common practice in livestock production all over the world. However, supplementation with mechanically delinted cottonseed hulls (DCSH) and cottonseed linter residue (CLR) is uncommon. Cottonseed by-products, including LCSH, DCSH and CLR, were assessed by chemical analysis, an in situ nylon bag technique, an in vitro cumulative gas production technique and in vitro enzyme procedure. The crude protein (CP) content of CLR (302 g/kg dry matter (DM)) was approximately 3 times that of LCSH and 5 times that of DCSH. The crude fat content was approximately 3 times higher in CLR (269 g/kg DM) than in LCSH and 4 times higher than in DCSH. Neutral detergent fibre (311 g/kg DM) and acid detergent fibre (243 g/kg DM) contents of CLR were less than half those of DCSH or LCSH. Metabolisable energy, estimated by in vitro gas production and chemical analyses, ranked as follows: CLR (12.69 kJ/kg DM)>LCSH (7.32 kJ/kg DM)>DCSH (5.82 kJ/kg DM). The in situ degradation trial showed that the highest values of effective degradability of DM and CP were obtained for CLR (p<0.05). The in vitro disappearance of ruminal DM ranked as follows: CLR>LCSH>DCSH (p<0.05). The lowest digestibility was observed for DCSH with a two-step in vitro digestion procedure (p<0.05). The potential gas production in the batch cultures did not differ for any of the three cottonseed by-product feeds. The highest concentration of total volatile fatty acids was observed in CLR after a 72 h incubation (p<0.05). The molar portions of methane were similar between all three treatments, with an average gas production of 22% (molar). The CLR contained a higher level of CP than did LCSH and DCSH, and CLR fermentation produced more propionate. The DCSH and LCSH had more NDF and ADF, which fermented into greater amounts of acetate.

Ruminal Behavior of Protein and Starch Free Organic Matter of Lupinus Albus and Vicia Faba in Dairy Cows

  • Yu, P.;Leury, B.J.;Egan, A.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.974-981
    • /
    • 2002
  • Faba beans (vicia faba) (FB) and lupin seeds (Lupinus Albus) (LS) were dry roasted at three temperatures (110, 130, $150^{\circ}C$) for 15, 30 or 45 min to determine the effects of dry roasting on rumen degradation of crude protein and starch free organic matter ($^{PSF}OM$). Rumen degradation characteristics of $^{PSF}OM$ were determined by the nylon bag incubation technique in dairy cows fed 60% hay and 40% concentrate. Measured characteristics of $^{PSF}OM$ were undegradable fraction (U), degradable fraction (D), soluble fraction (S), lag time (T0), and the rate of degradation (Kd). Based on the measured characteristics, rumen availability ($RA^{PSF}OM$) and bypass $^{PSF}OM$ ($B^{PSF}OM$) were calculated. Dry roasting did not have a greater impact on rumen degradation characteristics of $^{PSF}OM$ (p>0.05). S varied from 32.1 (raw) to 30.0, 27.8, 30.8% (LS) and 15.4 (raw) to 14.4, 20.8, 20.9% (FB); D varied from 65.4 (raw) to 66.3, 66.9, 55.9% (LS) and 54.9 (raw) to 55.0, 51.0, 64.7% (FB); U varied from 2.6 (raw) to 7.3, 7.0, 7.7% (LS) and 29.7 (raw) to 30.6, 28.2, 14.4% (FB); Kd varied from 6.0 (raw) to 7.3, 7.0, 7.7% (LS) and 22.4 (raw) to 24.4, 21.1, 7.9% (FB); $B^{PSF}OM$ varied from 35.5 (raw) to 33.8, 36.6, 38.2% (LS) and 41.3 (raw) to 41.5, 39.7, 47.6% (FB) at 110, 130 and $150^{\circ}C$, respectively. Therefore dry roasting did not significantly affect $RA^{PSF}OM$, which were 353.7, 367.9, 349.6, 336.9 (g/kg DM) (LS) and 12.82, 127.0, 133.7, 117.1 (g/kg DM) (FB) at 110, 130 and $150^{\circ}C$, respectively. These results alone with our previously published reports indicate dry roasting had the differently affected pattern of rumen degradation characteristics of various components in LS and FB. It strongly increased bypass crude protein (BCP) and moderately increased starch (BST) with increasing temperature and time but least affected $^{PSF}OM$. Such desirable degradation patterns in dry roasted LS and FB might be beneficial to the high yielding cows which could use more dry roasted $^{PSF}OM$ as an energy source for microbial protein synthesized in the rumen and absorb more amino acids and glucose in the small intestine.

Predicting In Sacco Rumen Degradation Kinetics of Raw and Dry Roasted Faba Beans (Vicia faba) and Lupin Seeds (Lupinus albus) by Laboratory Techniques

  • Yu, P.;Egan, A.R.;Leury, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.10
    • /
    • pp.1377-1387
    • /
    • 2000
  • Two laboratory techniques: (1) an in vitro method with two procedures for measuring protein degradabilities and (2) an in vitro method with three procedures for measuring protein solubility, were investigated to determine which laboratory techniques could most accurately predict the quantity of rumen protein degradation kinetics of legume seeds after dry roasting under various conditions, in terms of (1) rumen protein disappearance ($D_j$, where j=0, 2, 4, 8, 12, 24 and 48 h incubation), (2) rumen protein effective degradability (EDCP), (3) the parameters describing rumen degradation characteristics (the soluble fraction: S, the potentially degradable fraction: D, undegradable fraction: U, lag time: T0 and the degradation rate: Kd) and (4) rumen bypass protein (BCP), which were determined by the method accepted internationally at present, in sacco nylon bag technique using the standardized Dutch method. Feeds evaluated were the raw and dry roasted whole faba (Vicia faba) beans (WFB) and whole lupin (Lupinus albus) seeds (WLS), each was dry roasted under various conditions (at 110, 130 or $150^{\circ}C$ for 15, 30 or 45 min). In vitro protein degradability ($D_1$_Auf and $D_{24}$_Auf) were determined using the modified Aufr re method by enzymatic hydrolysis for 1 h and 24 h using a protease extracted from Streptomyces griseus in a borate-phosphate buffer. In vitro protein solubility ($bf_1$_S, $bf_2$_S, $bf_3$_S) was measured in a borate-phosphate buffer with three different procedures. Results from laboratory techniques (in vitro) were correlated and linearly regressed with in sacco results. Of the three procedures of in vitro protein solubility evaluated, none of them could predict in sacco results with good precision. The highest Pearson correlation coefficient ($R^2$) was less than 0.50. Of two procedures of in vitro protein degradability studied, the $D_1$_Auf values were closely correlated with in sacco parameters: Kd, EDCP and %BCP with high R' values: 0.82, 0.85 and 0.85, respectively, and closely correlated with in sacco $D_j$ at 2, 4, 8 and 12 h rumen incubation with high $R^2$ values: 0.83, 0.91, 0.93 and 0.83, respectively. The $D_{24}$_Auf values could not predict in sacco results. The highest $R^2$ value was less then 0.40. These results indicated that in vitro protein solubility measured in borate-phosphate failed to identify differences in the rate and extent of protein degradation of legume seeds after dry roasting under various conditions and thus should not be used to predict rumen degradation, particularly for heat processed feedstuffs. But in vitro protein degradability using the modified Aufr re method by enzymatic hydrolysis for 1 h or possibly an intermediate time (>1 h and <24 h) is a promising laboratory procedure to detect effectiveness of dry roasting legume seeds on rumen protein degradation characteristics and could be used as a simple laboratory method to predict the rate and extent of protein degradation in the rumen in sacco with high accuracy. The equations to predict EDCP, Kd and BCP of dry roasted legume seeds (WLS and WFB) under various conditions are as follow: For both: EDCP (%)=-1.37+1.06*$D_1$_Auf ($R^2=0.85$, p<0.01). For both: Kd (%/h)=-21.81+0.49*$D_1$_Auf ($R^2=0.82$, p<0.01). For both: %BCP=103.37-1.07*$D_1$_Auf ($R^2=0.85$, p<0.01).