• Title/Summary/Keyword: Nvidia CUDA

Search Result 80, Processing Time 0.022 seconds

Fast Stereoscopic 3D Broadcasting System using x264 and GPU (x264와 GPU를 이용한 고속 양안식 3차원 방송 시스템)

  • Choi, Jung-Ah;Shin, In-Yong;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.540-546
    • /
    • 2010
  • Since the stereoscopic 3-dimensional (3D) video that provides users with a realistic multimedia service requires twice as much data as 2-dimensional (2D) video, it is difficult to construct the fast system. In this paper, we propose a fast stereoscopic 3D broadcasting system based on the depth information. Before the transmission, we encode the input 2D+depth video using x264, an open source H.264/AVC fast encoder to reduce the size of the data. At the receiver, we decode the transmitted bitstream in real time using a compute unified device architecture (CUDA) video decoder API on NVIDIA graphics processing unit (GPU). Then, we apply a fast view synthesis method that generates the virtual view using GPU. The proposed system can display the output video in both 2DTV and 3DTV. From the experiment, we verified that the proposed system can service the stereoscopic 3D contents in 24 frames per second at most.

Efficient Implementation of Candidate Region Extractor for Pedestrian Detection System with Stereo Camera based on GP-GPU (스테레오 영상 보행자 인식 시스템의 후보 영역 검출을 위한 GP-GPU 기반의 효율적 구현)

  • Jeong, Geun-Yong;Jeong, Jun-Hee;Lee, Hee-Chul;Jeon, Gwang-Gil;Cho, Joong-Hwee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.2
    • /
    • pp.121-128
    • /
    • 2013
  • There have been various research efforts for pedestrian recognition in embedded imaging systems. However, many suffer from their heavy computational complexities. SVM classification method has been widely used for pedestrian recognition. The reduction of candidate region is crucial for low-complexity scheme. In this paper, We propose a real time HOG based pedestrian detection system on GPU which images are captured by a pair of cameras. To speed up humans on road detection, the proposed method reduces a number of detection windows with disparity-search and near-search algorithm and uses the GPU and the NVIDIA CUDA framework. This method can be achieved speedups of 20% or more compared to the recent GPU implementations. The effectiveness of our algorithm is demonstrated in terms of the processing time and the detection performance.

Warp-based Emotion-adaptive Real-Time Transforming Technique of Character's Facial Expression (워핑 기반의 감정 적응형 실시간 캐릭터 표정변환 기법)

  • Bae, Dong-Hee;Kim, Jin-Mo;Yun, Do-Kyung;Cho, Hyung-Je
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.434-437
    • /
    • 2011
  • 최근 단일 프로세서의 성능 개선이 한계에 이르고, 이에 따라 데이터 병렬 처리를 통한 시스템 성능 개선에 관한 연구가 활발히 진행되고 있다. 또한 이러한 변화로 인해 영상처리 분야에서도 대규모 연산의 병렬 컴퓨팅 수행에 관한 연구가 꾸준히 진행되고 있으며 하드웨어 또한 발전하여 실시간 시스템에 영상처리 분야가 많이 활용되고 있다. 본 논문에서는 캐릭터의 감정 상태에 따른 표정을 영상처리 분야에서 많이 사용되고 있는 이미지 워핑 기법을 적용하여 변화시킨다. 인간이 표현할 수 있는 기본적인 감정에 따른 표정을 데이터베이스로 정리하여 캐릭터에게 임의의 감정값이 주어지면 그에 맞는 표정을 데이터베이스에서 선택하여 사용자가 설정한 프레임만큼 워핑을 수행한다. 하지만 매 프레임에 대해 정해져 있는 제어선에 따라 움직이는 픽셀들의 워핑 연산은 그 계산량이 너무 많아 실시간으로 처리하기에 여러 가지 제약이 뒤따른다. 따라서 이를 실시간으로 처리하기 위해 NVIDIA의 CUDA를 활용한 데이터 병렬처리를 수행하여 실시간 처리가 가능하게 하는 방법을 제안하고, 실험을 통해 그 유용성을 제시한다.

A Study on GPGPU Performance Improvement Technique on GCN Architecture Using OpenCL API (GCN 아키텍쳐 상에서의 OpenCL을 이용한 GPGPU 성능향상 기법 연구)

  • Woo, DongHee;Kim, YoonHo
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.1
    • /
    • pp.37-45
    • /
    • 2018
  • The current system upon which a variety of programs are in operation has continuously expanded its domain from conventional single-core and multi-core system to many-core and heterogeneous system. However, existing researches have focused mostly on parallelizing programs based CUDA framework and rarely on AMD based GCN-GPU optimization. In light of the aforementioned problems, our study focuses on the optimization techniques of the GCN architecture in a GPGPU environment and achieves a performance improvement. Specifically, by using performance techniques we propose, we have reduced more then 30% of the computation time of matrix multiplication and convolution algorithm in GPGPU. Also, we increase the kernel throughput by more then 40%.

Fast Stereo matching based on Plane-converging Belief Propagation using GPU (Plane-converging Belief Propagation을 이용한 고속 스테레오매칭)

  • Jung, Young-Han;Park, Eun-Soo;Kim, Hak-Il;Huh, Uk-Youl
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.88-95
    • /
    • 2011
  • Stereo matching is the research area that regarding the estimation of the distance between objects and camera using different view points and it still needs lot of improvements in aspects of speed and accuracy. This paper presents a fast stereo matching algorithm based on plane-converging belief propagation that uses message passing convergence in hierarchical belief propagation. Also, stereo matching technique is developed using GPU and it is available for real-time applications. The error rate of proposed Plane-converging Belief Propagation algorithm is similar to the conventional Hierarchical Belief Propagation algorithm, while speed-up factor reaches 2.7 times.

A Study on Performance Improvement of Distributed Computing Framework using GPU (GPU를 활용한 분산 컴퓨팅 프레임워크 성능 개선 연구)

  • Song, Ju-young;Kong, Yong-joon;Shim, Tak-kil;Shin, Eui-seob;Seong, Kee-kin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.499-502
    • /
    • 2012
  • 빅 데이터 분석의 시대가 도래하면서 대용량 데이터의 특성과 계산 집약적 연산의 특성을 동시에 가지는 문제 해결에 대한 요구가 늘어나고 있다. 대용량 데이터 처리의 경우 각종 분산 파일 시스템과 분산/병렬 컴퓨팅 기술들이 이미 많이 사용되고 있으며, 계산 집약적 연산 처리의 경우에도 GPGPU 활용 기술의 발달로 보편화되는 추세에 있다. 하지만 대용량 데이터와 계산 집약적 연산 이 두 가지 특성을 모두 가지는 문제를 처리하기 위해서는 많은 제약 사항들을 해결해야 하는데, 본 논문에서는 이에 대한 대안으로 분산 컴퓨팅 프레임워크인 Hadoop MapReduce와 Nvidia의 GPU 병렬 컴퓨팅 아키텍처인 CUDA 흘 연동하는 방안을 제시하고, 이를 밀집행렬(dense matrix) 연산에 적용했을 때 얻을 수 있는 성능 개선 효과에 대해 소개하고자 한다.

Empirical Performance Evaluation of Communication Libraries for Multi-GPU based Distributed Deep Learning in a Container Environment

  • Choi, HyeonSeong;Kim, Youngrang;Lee, Jaehwan;Kim, Yoonhee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.911-931
    • /
    • 2021
  • Recently, most cloud services use Docker container environment to provide their services. However, there are no researches to evaluate the performance of communication libraries for multi-GPU based distributed deep learning in a Docker container environment. In this paper, we propose an efficient communication architecture for multi-GPU based deep learning in a Docker container environment by evaluating the performances of various communication libraries. We compare the performances of the parameter server architecture and the All-reduce architecture, which are typical distributed deep learning architectures. Further, we analyze the performances of two separate multi-GPU resource allocation policies - allocating a single GPU to each Docker container and allocating multiple GPUs to each Docker container. We also experiment with the scalability of collective communication by increasing the number of GPUs from one to four. Through experiments, we compare OpenMPI and MPICH, which are representative open source MPI libraries, and NCCL, which is NVIDIA's collective communication library for the multi-GPU setting. In the parameter server architecture, we show that using CUDA-aware OpenMPI with multi-GPU per Docker container environment reduces communication latency by up to 75%. Also, we show that using NCCL in All-reduce architecture reduces communication latency by up to 93% compared to other libraries.

GPU-Based ECC Decode Unit for Efficient Massive Data Reception Acceleration

  • Kwon, Jisu;Seok, Moon Gi;Park, Daejin
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1359-1371
    • /
    • 2020
  • In transmitting and receiving such a large amount of data, reliable data communication is crucial for normal operation of a device and to prevent abnormal operations caused by errors. Therefore, in this paper, it is assumed that an error correction code (ECC) that can detect and correct errors by itself is used in an environment where massive data is sequentially received. Because an embedded system has limited resources, such as a low-performance processor or a small memory, it requires efficient operation of applications. In this paper, we propose using an accelerated ECC-decoding technique with a graphics processing unit (GPU) built into the embedded system when receiving a large amount of data. In the matrix-vector multiplication that forms the Hamming code used as a function of the ECC operation, the matrix is expressed in compressed sparse row (CSR) format, and a sparse matrix-vector product is used. The multiplication operation is performed in the kernel of the GPU, and we also accelerate the Hamming code computation so that the ECC operation can be performed in parallel. The proposed technique is implemented with CUDA on a GPU-embedded target board, NVIDIA Jetson TX2, and compared with execution time of the CPU.

Implementation of GPU Based Polymorphic Worm Detection Method and Its Performance Analysis on Different GPU Platforms (GPU를 이용한 Polymorphic worm 탐지 기법 구현 및 GPU 플랫폼에 따른 성능비교)

  • Lee, Sunwon;Song, Chihwan;Lee, Injoon;Joh, Taewon;Kang, Jaewoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1458-1461
    • /
    • 2010
  • 작년 7월 7일에 있었던 DDoS 공격과 같이 악성 코드로 인한 피해의 규모가 해마다 증가하고 있다. 특히 변형 웜(Polymorphic Worm)은 기존의 방법으로 1차 공격에서의 탐지가 어렵기 때문에 그 위험성이 더 크다. 이에 본 연구에서는 바이오 인포매틱스(Bioinformatics) 분야에서 유전자들의 유사성과 특징을 찾기 위한 방법 중 하나인 Local Alignment를 소개하고 이를 변형 웜 탐지에 적용한다. 또한 수행의 병렬화 및 알고리즘 변형을 통하여 기존 알고리즘의 $O(n^4)$수행시간이라는 단점을 극복한다. 병렬화는 NVIDIA사의 GPU를 이용한 CUDA 프로그래밍과 AMD사의 GPU를 사용한 OpenCL 프로그래밍을 통하여 수행되었다. 이로써 각 GPGPU 플랫폼에서의 Local Alignment를 이용한 변형 웜 탐지 알고리즘의 성능을 비교하였다.

Performance Improvement in HTTP Packet Extraction from Network Traffic using GPGPU (GPGPU 를 이용한 네트워크 트래픽에서의 HTTP 패킷 추출 성능 향상)

  • Han, SangWoon;Kim, Hyogon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.718-721
    • /
    • 2011
  • 웹 서비스를 대상으로 하는 DDoS(Distributed Denial-of-Service) 공격 또는 유해 트래픽 유입을 탐지 또는 차단하기 위한 목적으로 HTTP(Hypertext Transfer Protocol) 트래픽을 실시간으로 분석하는 기능은 거의 모든 네트워크 트래픽 보안 솔루션들이 탑재하고 있는 필수적인 요소이다. 하지만, HTTP 트래픽의 실시간 데이터 측정 양이 시간이 지날수록 기하급수적으로 증가함에 따라, HTTP 트래픽을 실시간 패킷 단위로 분석한다는 것에 대한 성능 부담감은 날로 커지고 있는 실정이다. 이제는 응용 어플리케이션 차원에서는 성능에 대한 부담감을 해소할 수 없기 때문에 고비용의 소프트웨어 가속기나 하드웨어에 의존적인 전용 장비를 탑재하여 해결하려는 시도가 대부분이다. 본 논문에서는 현재 대부분의 PC 에 탑재되어 있는 그래픽 카드의 GPU(Graphics Processing Units)를 범용적으로 활용하고자 하는 GPGPU(General-Purpose computation on Graphics Processing Units)의 연구에 힘입어, NVIDIA사의 CUDA(Compute Unified Device Architecture)를 사용하여 네트워크 트래픽에서 HTTP 패킷 추출성능을 응용 어플리케이션 차원에서 향상시켜 보고자 하였다. HTTP 패킷 추출 연산만을 기준으로 GPU 의 연산속도는 CPU 에 비해 10 배 이상의 높은 성능을 얻을 수 있었다.