• Title/Summary/Keyword: Nutrient Variation

Search Result 340, Processing Time 0.028 seconds

Development and Application of Multi-Functional Floating Wetland Island for Improving Water Quality (수질정화를 위한 다기능 인공식물섬의 개발과 적용)

  • Yoon, Younghan;Lim, Hyun Man;Kim, Weon Jae;Jung, Jin Hong;Park, Jae-Roh
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.221-230
    • /
    • 2016
  • Multi-functional floating wetland island (mFWI) was developed in order to prevent algal bloom and to improve water quality through several unit purification processes. A test bed was applied in the stagnant watershed in an urban area, from the summer to the winter season. For the advanced treatment, an artificial phosphorus adsorption/filtration medium was applied with micro-bubble generation, as well as water plants for nutrient removal. It appeared that the efficiency of chemical oxygen demand (COD) and total phosphorus (T-P) removal was higher in the warmer season (40.9%, 45.7%) than in the winter (15.9%, 20.0%), and the removal performance (suspended solid, chlorophyll a) in each process differs according to seasonal variation; micro-bubble performed better (33.1%, 39.2%) in the summer, and the P adsorption/filtration and water plants performed better (76.5%, 59.5%) in the winter season. From the results, it was understood that the mFWI performance was dependent upon the pollutant loads in different seasons and unit processes, and thus it requires continuous monitoring under various conditions to evaluate the functions. In addition, micro-bubbles helped prevent the formation of anaerobic zones in the lower part of the floating wetland. This resulted in the water circulation to form a new healthy aquatic ecosystem in the surrounding environment, which confirmed the positive influence of mFWI.

The Summer Distribution of Picophytoplankton in the Western Pacific (하계 서태평양의 초미소 식물플랑크톤 분포 특성 연구)

  • Noh Jae-Hoon;Yoo Sin-Jae;Kang Sung-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.1 s.61
    • /
    • pp.67-80
    • /
    • 2006
  • The effect of environmental forcing on picophytoplankton distribution pattern was investigated in the tropical and subtropical western Pacific (TSWP) and the East Sea in September, 2002, and the continental shelf of the East China Sea (C-ECS) in August, 2003. The abundance of picophytoplankton populations, Synechococcus, Prochlorococcus and picoeukaryotes were determined by flow cytometry analyses. Picophytoplankton vertical profiles and integrated abundance $(0\sim100\;m)$ were compared with these three physiochemically different regions. Variation patterns of integrated cell abundance of Synechococcus and Prochlorococcus in these three regions showed contrasting results. Synechococcus showed average abundance of $84.5X10^{10}\;cells\;m^{-2}$, in the TSWP, $305.6X10^{10}\;cells\;m^{-2}$ in the C-ECS, and $125.4X10^{10}\;cells\; m^{-2}$ in the East Sea where increasing cell concentrations were observed in the region with abundant nutrient. On the other hand, Prochlorococcus showed average abundance of $504.5X10^{10}\;cells\;m^{-2}$ in the TSWP, $33.2x10^{10}\;cells\;m^{-2}$ in the C-ECS, and $130.2X10^{10}\;cells\;m^{-2}$ in the East Sea exhibiting a distinctive pattern of increasing cell abundance in oligotrophic warm water. Although picoeukaryotes showed a similar pattern to Synechococcus, the abundance was 1/10 of Synechococcus. Synechococcus and picoeukaryotes showed ubiquitous distribution whereas Prochlorococcus generally did not appear in the C-ECS and the East Sea with low salinity environment. The average depth profiles for Synechococcus and Prochlorococcus displayed uniform abundance in the surface mixed layer with a rapid decrease below the surface mixed layer. for Prochlorococcus, a similar rapid decreasing trend was not observed below the surface mixed layer of the TSWP, but Prochlorococcus continued to show high cell abundance even down to 100 m depth. Picoeukaryotes showed uniform abundance along $0\sim100\;m$ depth in the C-ECS, and abundance maximum layer appeared in the East Sea at $20\sim30\;m$ depth.

The Trend and Assessment of Water Pollution from Midstream to Downstream of the Kum River (금강 중 ${\cdot}$ 하류의 오염 양상과 수질평가)

  • Rim, Chang-Soo;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.1 s.89
    • /
    • pp.51-60
    • /
    • 2000
  • In order to understand the trend and assessment of water pollution, seasonal water quality was determined in the main river and the tributaries from midstream to downstream of the Kum River from March 1998 to June 1999. Among environmental factors, the variation of nitrogen, phosphorus and chlorophyll-a was distinctive on an aspect of increase and decrease relatively to others, and particularly the impact of inorganic N ${\cdot}$ P inflowing into the main river was observed to be more significant at the Kapchon, Mihochon and Soksongchon among the tributaries. Water quality was highly related to hydrologic factor, and it was more deteriorated when water discharge maintains for a long time below normal flow or relatively at low condition of minimum and drought flow. These phenomena were remarkablee from December to March of the next year. $NH_4$ and SRP were decreased dramatically flowing toward the lower part of the river and chl-a was increased exponentially. While, the variations of $NO_3$ and $BOD_5$ were regular from midstream to downstream and there was no significant difference between the stations. Limiting nutrient for Phytoplankton growth seemed to be P than N because the ratio of TN/TP or DIN/SRP was relatively high as 42 or 544 in the main river, respectively. The main river and tributaries were ranked to be third grade, based on the assessment of BOD as an indirect indicator of organics, but particularly Kapchon was ranked to be over fifth grade. In addition, the inflow of high N ${\cdot}$ P nutrients from tributaries including Kapchon and Mihochon seemed to be major factor of the development of water pollution of the Kum River. On the other hand, persistent bloom of phytoplankton in lower part of the river was observed. As a conclusion, management of water quality for main source of pollution is urgent.

  • PDF

Temporal and Spatial Variation Analysis of Suspended Solids, Ionic Contents, and Habitat Quality in the Woopo Wetland Watershed (우포늪 수계에서 부유물, 이온농도 및 서식지 특성에 대한 시 ${\cdot}$ 공간적 변이 분석)

  • Bae, Dae-Yeul;Choi, Ji-Woong;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.498-507
    • /
    • 2006
  • The main objective of present study was to evaluate how seasonal rainfall influenced natural habitat conditions of 10 metric habitat variables along with ionic conditions and suspended solids in the Woopo Wetland during August 2002-July 2003. Largest spatial variabilities in total suspended solids (TSS) occurred during the summer monsoon and the inorganic suspended solids (ISS), expressed as a inorganic proportion of total solids, showed linearly increasing trend from the upstream to downstream. This phenomenon was mainly attributed to counter flow of turbid water from the main Nakdong-River. During the flooding, ISS : TSS ratio showed large increases (92%) in the downstream than the upstream (43%). For this reason, transparency declined (mean=0.13 m, range=0.08-0.21 m) largely in the downstream reach and thus, chlorophyll-a concentration showed low values (range: $4.2-8.6\;{\mu}g\;L^{-1}$), indicating a direct influence on primary productivity or algal growth by inorganic turbidity. In the 2nd survey, ISS averaged 4.0 mg $L^{-1}$ (3.3-4.8 mg $L^{-1}$), thus the ISS decreased by 14 fold, compared to the ISS in the 1st survey during the flooding, while organic suspended solids (OSS) values were greater than those of ISS, indicating a dominance of organic solids. This condition was similar to solid contents in the 3rd survey, but showed a large difference compared to the 4th survey during the growing season. Habitat health assessments, based on 10 metric habitat variables, showed that QHEI values were greatest in the growing season (May) than any other seasons and largest spatial variations occurred in the 2nd survey. Overall, dataset suggest that seasonal episodic flooding during the monsoon may largely contribute nutrient cycling and sediment contents in the Woopo Wetland and Topyung Stream.

Annual Variations of Litterfall Production in a Broadleaved Deciduous Forest at the Mt. Keumsan LTER Site (금산 장기생태연구 조사지 낙엽활엽수림 낙엽낙지량의 연변동)

  • Kim, Choonsig;Lim, Jong Hwan;Lee, Im Kyun;Park, Byung Bae;Chun, Jung Hwa
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.2
    • /
    • pp.210-215
    • /
    • 2013
  • Litterfall production represents a major contribution of carbon and nutrient cycling in forest ecosystems. This study was carried out to determine the litterfall production in a broadleaved deciduous forest at the Mt. Keumsan Long Term Ecological Research (LTER) site, Southern Korea. Littefall was collected monthly or bimonthly from the site for 7 years from 2004 to2010. Leaf and reproductive (catkins) litters showed a seasonal variation, but litters of needle, branch, and barks were not changed across the seasons. Annual leaf litter of Quercus serrata and Carpinus laxiflora were significantly different (p<0.05) but that of C. cordata, Chamaecyparis obtusa, and Pinus thunbergii was not significantly changed for 7 years (p>0.05). Annual average litterfall production was 5,223 kg/ha, but annual variations were very large with minimum of 4,110 kg/ha/yr in 2004 and maximum of 6,002 kg/ha/yr in 2007. Total litterfall comprised of 2,323 kg/ha/yr in Q. serrata, 442 kg/ha/yr in C. laxiflora, 157 kg/ha/yr in C. cordata, 131 kg/ha/yr in Acer pseudosieboldianum, 390 kg/ha/yr in other deciduous tree species, 74 kg/ha/yr in P. thunbergii, 37 kg/ha/yr in C. obtusa, 672 kg/ha/yr in branches, 515 kg/ha/yr in miscellaneous, 448 kg/ha/yr in reproductive parts, and 54 kg/ha/yr in barks. respectively. The results indicate that litterfall production of the Mt. Keumsan LTER site was yearly fructurated with the positive linear relationship between leaf or total litterfall and annual mean temperature if no disturbance such as a typoon, and was lower than that of other Korean LTER sites.

An Evaluation of Aquatic Environment in the Okchon Stream-Embayment Watershed, Korea (옥천천 (만) 유역 하천과 만입부의 수환경 평가)

  • Kim, Dong-Sup;Lee, Hye-Keun;Maeng, Sung-Jin;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.181-190
    • /
    • 2003
  • An investigation was conducted on the aquatic environment of the Okchon Stream watershed six times from May to September 2002. The results of investigation revealed that variation of environmental factors were quite significant for each stream and reach, showing a significant difference between running water and stagnant water. Aquatic nutrients were relatively low in the upstream, gradually increasing as the influx of treated wastewater into the stream increased. This suggests that the point source definitely affected the nutrient content of the stream. In particular, the variations of SRP and $NH_4$ were very distinct in the watershed compared to other nutrients. Thus, it can be considered as a major factor in evaluating the effect of treated wastewater. Immediately after the influx of treated waste-water, the average content of SRP rose to 919.3 ${\mu}g$ P/l. This was a very effective level in the watershed, suggesting that the percentage of the nutrients in the water was controlled by the content of P. The constant supply of treated wastewater was found to be a critical factor in triggering the increase in chl-a in the embayment of the stream. With the proliferation of the blue-green algae, the content of chl- a ranged 234.5${\sim}$1,692.2 ${\mu}g/l$. The maximum standing crops exceeded $1.0{\times}10^6$ cells/ml in August, which was more than 200 times the level for red tide in the freshwater. This result was well reflected in other environmental factors, with 100% of AFDM/TSS reflecting the severity of water pollution by algae. Therefore, the reduction of P and N con-tents in the treated wastewater is critical in improving the aquatic environment of the stream as well as water quality management for the reservoir.

Long-term Variations of Water Quality Parameters in Lake Kyoungpo (경포호에서 수질변수들의 장기적인 변화)

  • Kwak, Sungjin;Bhattrai, Bal Dev;Choi, Kwansoon;Heo, Woomyung
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.95-107
    • /
    • 2015
  • In order to identify long-term trends of water quality parameters in Lake Kyeongpo, Mann-Kendall test, Sen's slope estimator and linear regression were applied on data, with 15 parameters from three different sites and rainfall, monitored once in every two months from March to November during 1998~2013. Seasonal variation analysis only used Mann-Kendall test and Sen's slope estimator. Analysis result showed that salinity, transparency and nutrient variables (total phosphorus, dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen, ammonia nitrogen) were only parameters having statistically significant trend. In linear regression analysis, salinity (surface and bottom layer of all sites) and transparency (only at site 1), were figured out with statistically significant increasing trend, while in non-parametric statistical method, salinity and transparency in all sites (surface, middle, deep) were figured out with statistically significant increasing trend. Water quality parameters showing statistically significant decreasing trends were dissolved oxygen (surface layer of site 1 and bottom layer of sites 2 and 3), total phosphorus (sites 1 and 2), dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen and ammonia nitrogen in the linear regression analysis and, dissolved oxygen (bottom layer of all sites), total phosphorus, dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen and ammonia nitrogen in the non-parametric method. Seasonal trend analysis result showed that salinity, turbidity, transparency and suspended solids in spring, salinity, transparency, nitrate nitrogen and suspended solids in summer and temperature, salinity, transparency and suspended solids in fall were the variables depending on the season with increasing trends. In general, rainfall during the research period showed decreasing trend. The significant reduction trends of nutrients in Lake Kyeongpo were believed to be related to lagoon restoration and water management project run by Gangneung city and under-water wear removal, but further detailed studies are needed to know the exact causes.

A Study of Fish Community on Up and Downstream of Hwabuk Dam Under Construction in the Upper Wie Stream. (위천 상류에 건설 중인 화북댐 상 하류 어류군집에 관한 연구)

  • Seo, Jin-Won;Kim, Hee-Sung
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.260-269
    • /
    • 2009
  • Hwabuk Dam has been under construction to reduce flood damage in Nakdong River watershed and to supply stable water for middle area of Gyeongbuk Province. Therefore, fish investigation in up and downstream of the dam was conducted from 2004 to 2008 in order to determine any negative effect on fish community due to dam construction and to use as fundamental data for conserving species diversity and maintaining stream health. According to data analysis on water quality, temperature, dissolved oxygen, pH, suspended solids, and total E-coli had seasonal variation, but they did not significantly differ in sites. However, biological and chemical oxygen demand, chlorophyll-a, nitrogen, and phosphorus representing organic matter and nutrient concentration were higher in upper site and decreased to lower site so that they differed by site. Concentration of arsenic among the heavy metals was less than 0.05 mg $L^{-1}$, which is regulated for protection of human health in water quality standard, except for 0.092 mg $L^{-1}$ in June 2005. During the study period, the total number of fish caught from the 6 sites was 10,263 representing 7 families 19 species. Among them, dominant and subdominant species were Korean chub (Zacco koreanus, 62.5%) and Chinese minnow (Rhynchocypris oxycephalus, 10.6%) which inhabit mostly in mid and upper streams, Korea. Among the 19 species, Korean endemic species were 9 species (47.4%) including Korean slender gudgeon (Squalidus gracilis majimae), Korean dark sleeper (Odontobutis platycephala), and Korean shiner (Coreoleuciscus splendidus). There was several individuals of the $1^{st}$-class endangered species, Naktong nose loach (Koreocobitis nahtongensis), caught in 2005${\sim}$2007, and no introduced species of fish was found in entire sampling period. According to result of community analysis, dominance index decreased toward lower site, but diversity and richness indices increased toward lower site. The equation of length-weight relationship on the dominant species was TW=0.000003$(TL)^{3.2603}$. The parameter b in the equation was greater than 3.0 indicating good nutritional condition in the populations. Compared to populations of Korean chub in other streams, the population in Hwabuk Dam watershed had higher mean of condition factor by size indicating better growth rate. With fish fauna and multi-metric health assessment model in each sampling attempt, index of biotic integrity (IBI) was evaluated and it resulted mostly in good (26${\sim}$35) and excellent (36${\sim}$40) condition in all sites, and the mean of IBI was the highest in site 5. The results indicate that it is very important to study not only environmental impact assessment with fish composition but also stream health assessment in order to conserve healthy aquatic ecosystem.

Effect of Eddy on the Cycle of 210Po and 234 in the central Region of Korean East Sea (동해 중부해역에서 210Po과 234Th의 순환에 대한 소용돌이의 영향)

  • YANG, HAN SOEB;KIM, SOUNG SOO;LEE, JAE CHUL
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.279-287
    • /
    • 1995
  • The vertical profiles of natural 210Pb, 210Po and 234Th activities were measured for the upper 100 m of water column at three stations in the middle region of the Korean East Sea during May 1992. And the distribution of these radionuclides was discussed associated with the formation of warm eddy or water mass. The main thermocline was maintained between the depth of 50 and 100 m at the southern station (Sta. A1), and between the depth of 10 to 50 m at the coastal station of Sockcho (Sta. B10). Contrastingly, a main thermocline at Sta. A10, which locates near the center of warm eddy, was observed below 230 m depth. Between 50 and 220 m depth of Sta. A10 is there a relatively homogeneous water mass of 10.1${\pm}$0.5$^{\circ}C$, which is significantly higher in temperature and lower in nutrient than the other two stations. It seems to be due to sinking of the warm surface water in which nutrients were completely consumed. Both 210Pb and 210Po show the highest concentration at Sta. A1 and the lowest at Sta. B10 among the three stations. Also, the 210Pb activity is generally higher in the upper layer than in the lower layer, while 210Po activity represents the reversed pattern at all three stations. At Sta. A1 and Sta. B10, the activities of 210Po relative to its parent 210Pb were deficient in the water column above the main thermocline, but were excess below the thermocline. However, the station near the center of warm eddy(Sta. A10), shows no excess of 210Po in the depths below 50 m, although its defficiency is found in the upper layer like the other stations. At Sta. A1 and b10. 234Th activities are slightly lower in the surface mixed layer than in the deeper region However, at Sta. A10, 234Th activity in the upper 30 m is higher than below 50 m or in the same depth of the other stations, probably because of the high concentration of particulate matter. The residence time of 210Po in the surface mixed layer at Sta. A10 is 0.4 year, much shorter than at the other two stations(about one year). Above 100 m depth, the residence times of 234Th range from 18 to 30 other two stations(about on year). Above 100 m depth, the residence times of 234Th range from 18 to 30 days at all stations, without significant regional variation. The percentages of recycled 210Po within the thermocline are 39% and 92% at Sta. A1 and Sta. B10, respectively. Much higher value at Sta. B10 may be due to a thin thickness of the mixed layer as well as the slower recycling rate of 210Po in the main thermocline.

  • PDF

Agronomical studies on the major environmental factors of rice culture in Korea (수도재배의 주요환경요인에 관한 해석적 조사연구)

  • Yung-Sup Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.49-82
    • /
    • 1965
  • For the stable and high yields of low-land rice in Korea, the characteristics of rice plant for the vegetative and physiological responses, plant type formation, and yield components have been studied in order to obtain the fundamental data for the improvement of cultural practices, especially for the ideal fertilizer application. Furthermore the environmental conditions in Korea including temperatures, light, precipitation, and soil conditions have been compared in the broad sense with those in Japan, and the application of nitrogen, phosphorus, potassium, silicate and other micro-nutrients were described in relation to the characteristics of environmental conditions for the improvement of fertilizer application. 1. The average yield of polished-rice per 10 are in Korea is about 204 kg and this values are much less than those in Japan and Taiwan where they produce 77% to 13% more than in Korea. The rate of yield increase a year in Korea is 4.2 kg, but in Japan and Taiwan the rates of yield increase a year are 81 % and 62%, respectively. It was also found that the coefficient of variation of yield is 7.7% in Korea, 6.7% in Japan and 2.5% in Taiwan. This means that the stability of producing rice in Korea is very low when compared with those in Japan and Taiwan. 2. It was learned from the results obtained from the 'annual yield estimation experiment' that there are big differences in the respect of plant type formations between rice crops grown in Japan and Korea. The important differences found were as follows: (1) The numbers of spikelets per 3.3 square meters are 891 in Korea and 1, 007 in Japan(13% more than in Korea). (2) The numbers of tillers per 3.3 square meters at the stage of maximum tillering are 1, 150 in Korea, but in Japan they showed 19% more than in Korea. (3) The ratio of effective tillers to total tillers is 77.5% in Korea and 74.7% in Japan, which seems to be higher in Korea than in Japan. But the ratio in Korea is very low when considered the numbers of total tillers in both countries. (4) The ratio of grain to straw is 85.4% in Korea and 96.3% in Japan. 3. The average temperatures during the growing season at the area of Suwon, Kwangjoo and Taegu are almost same as those in the district of Jookokoo(Fookoo yama) in Japan, i.e., the temperatures during the rice-growing season in Korea are similar to those in the southern-warm regions of Japan. 4. Considering the minimum temperatures at the stage of limiting transplanting, 13$^{\circ}C$, the time of transplanting might be 30 to 40 days earlier than presently practicing transplanting time, which comes around June 10. 5. The temperatures during the vegetative growth in Korea were higher than those temperatures that needed in the protein synthesis which ate the main metabolism during this stage. However, the temperatures at the time of reproductive growth was lower than the temperatures that needed in the sugar assimilation which is main metabolism in this stage. In this point of view, it might be considered that the proper time of growing rice plant in Korea would be rather earlier. 6. The temperatures and the day light conditions at the time of first tillering stage of rice plant, when planted as presenting transplanting practices, are very satisfactory, but the poor day light length, high temperatures and too wet conditions in the time of last-tillering stage(mid or last July) might cause the occurrence of disease such as blast. 7. The heading stage of rice plants at each region through nations when planted as presently practicing method comes when the day light length is short. 8. It was shown that the accumulated average air-temperature at the time of maturing stage was not enough and the heading time was too late, when considered the annual deviations of mean temperatures and low minimum temperatures. 9. The nitrogen content of each plant part at the each growing stage was very high at the stage of vegetative growth when compared with the nitrogen content at the stage of reproductive growth after heading. In this respect it was believed to be important to prevent the nutrient shortages at the reproductive stages, especially after the heading. 10. The area of unsatisfactory irrigation paddy fields and natural rain-fed paddy fields are getting reduced in Korea. The correlation between the rate of reducing unsatisfactory irrigation and natural rain-fed paddy fields and the rate of yield increase were computed. The correlation coefficients(r) between the area of unsatisfactory irrigation paddy fields and yield increase were +0.525, and between the natural rain-fed paddy fields and yield increase, +0.832 and between the unsatisfactory irrigation plus natural rain-fed paddy fields and yield increase, +0.84. And there were. highly significant positive correlations between natural rain-fed paddy fields and yield increases indicating that the less the area of natural rain-fed paddy fields, the greater the yields per unit area. 11. The results obtained from the fertilizer experiments (yield performance trials) conducted in both Korea and Japan showed that the yield of non-fertilized plots per 10 are was 231 kg in Korea and 360 kg in Japan. On the basis of this it might be concluded that the fertility of soil in Korea is lower than that in Japan. Furthermore it was. also found that the yields of non-nitrogen applied plots per 10 are were 236 kg in Korea and 383 kg in Japan. This also indicates that the yields of rice in Korea are largely depending on the nitrogen content in the soil. 12. The followings were obtained when the chemical natures of soils in both Korea and Japan were compared. (1) The content of organic matter, total nitrogen, exchangeable calcium, and magnesium in Korea were no more than the half those in Japan. (2) The content of N/2 chloride and soluble silicate in low-land soil were on the average lower in Korea. (3) The exchange capacity of bases in Korea was no more than half that in Japan. 13. It was also observed by comparing the soil nature of the soil with high yielding capacity with the soil with low yielding capacity that the exchange capacity of bases, exchangeable calcium and magnesium, potassium, phosphorus, manganese, silicate and iron were low in the soil with low yielding capacity. 14. The depth of furrow slice was always deeper in the soil with high yielding capacity, and the depth of furrow slice in Korea was also shallower than that in Japan. 15. Summarizing the various conditions mentioned previously and considering the effects of silicate and trace elements such as manganese and iron besides three elements on the physiological and plant type formation of rice crops, more realistic and more ideal fertilizing practices were proposed. proposed.

  • PDF