• Title/Summary/Keyword: Nutrient Requirements

Search Result 217, Processing Time 0.035 seconds

The Effects of Increased Temperature on Seed Nutrition, Protein, and Oil Contents of Soybean [Glycine max (L.)] (온도 상승에 따른 콩 종실의 무기영양과 단백질 및 지방 함량 평가)

  • Lee, Yun-Ho;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyong;Baek, Jae-Kyeong;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.4
    • /
    • pp.331-337
    • /
    • 2018
  • The content of nutrients, proteins, and oils of crop seeds is affected by global climate change due to the increase in temperature. Information regarding the effects of increased temperature on soybean seed nutrition is limited despite its vital role in seed quality and food security. The objective of this study was to determine the effect of increasing temperature on seed nutrient, protein, and oil content in two soybean [Glycine max (L.) Merr] cultivars (Daewonkong and Pungsannamulkong during the reproductive period in a temperature-gradient chamber. Four temperature treatments, Ta (near ambient temperature), $Ta+1^{\circ}C$ (ambient temperature+$1^{\circ}C$), $Ta+2^{\circ}C$ (ambient temperature+$2^{\circ}C$), $Ta+3^{\circ}C$ (ambient temperature+$3^{\circ}C$), and $Ta+4^{\circ}C$ (ambient temperature+$4^{\circ}C$), were established by dividing the rows along the temperature gradient. At maturity, increased temperature did not significantly affect the concentration of P, K, Ca, and Mg. The protein and oil content was significantly correlated with temperature. At maturity, the protein content of DWK and PSNK was reduced at $Ta+4^{\circ}C$. The oil content was the highest at $Ta+4^{\circ}C$ in DWK, whereas it decreased in PSNK at $Ta+4^{\circ}C$. Consequently, the biochemical composition of soybean seeds changed with the increase in temperature. These results illustrate the effects of temperature on soybean seed nutrient, protein, and oil content, which can help improve soybean quality at different temperatures. Thus, the biochemical composition of crop seeds can be changed in accordance with nutritional requirements for the benefit of human health in the future.

A Study on Changes in Feed Digestibility and Establishment of Energy Requirement for Maintenance of Growing Hanwoo Steers under Severe Heat Stress (심각한 열스트레스에 의한 육성기 거세한우의 사료 소화율 변화 탐색 및 유지를 위한 에너지 요구량 설정 연구)

  • Cho, Yu Kyung;Choi, Seong Ho;Han, Ouk Kyu;Park, Joung Hyun;Choi, Chang Weon
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.163-172
    • /
    • 2016
  • Four growing Hanwoo cattle weighing 200±11.7kg were used within 4×4 Latin square design to establish nutrient requirements for Hanwoo growing steers under severe heat stress. The steers were fed four different energy level diets; 100%(control), 100%(E100), 115%(E115) and 130%(E130) of energy levels of growing Hanwoo steers based on total digestible nutrient level suggested by the Korea Feeding Standard for Hanwoo using timothy hay and commercial concentrate. The steers in the control were housed with no stress, whereas the steers in the other groups were under severe heat stress. The severe heat stress significantly decreased(p<0.05) true digestibility of dry matter(i.e. control 81.5% vs E100 79.1, E115 77.0 and E130 76.0, respectively). The severe heat stress and different energy intake levels did not affect blood physiological metabolites and body temperature of the growing steers. Based on changes in average daily gain by different energy intake level, the equation(Y=0.235X+115.03) of energy requirement of growing Hanwoo steers without changes in body weight was calculated, indicating that, compared with the present energy intake suggested by Korean feeding standard, 15.03% of dietary energy for maintenance of growing Hanwoo steers under severe heat stress should be increased.

Longitudinal Study of Iron Concentration in Korean Preterm Human Milk

  • Lim, Gi-Na;Koo, Mi-Sung;Kim, Ellen Ai-Rhan;Min, Won-Ki;Yoon, Sung-Chul
    • Neonatal Medicine
    • /
    • v.18 no.1
    • /
    • pp.104-110
    • /
    • 2011
  • Purpose: The unique nutrient requirements of premature infants necessitate knowledge of the composition of human milk produced by mothers of such infants. We investigated longitudinal changes in iron concentration of preterm human milk and compared to those observed in human milk of mothers of 1-week old term infants to determine optimal iron supplementation guidelines when preterm infants are nourished exclusively by breast feeding. Methods: Human milk samples were collected at 1, 2, 4, 6, 8 and 12 weeks postpartum from 103 mothers who delivered infants of gestational age <34 weeks or weighing <1,800 g. Term human milk samples were collected at 1 week postpartum from 24 mothers. Results: There were no significant differences in the iron concentrations of preterm human milk obtained at 2 to 8 weeks postpartum (36.3${\pm}$23.1 to 45.8${\pm}$26.0 $\mu$g/dL), but these concentrations were higher than those noted at 1 week in preterm (23.1${\pm}$14.6 $\mu$g/ dL) and term (25.2${\pm}$7.55 $\mu$g/dL) infants. The iron concentration in preterm human milk obtained at corrected term age (42.2${\pm}$19.4 $\mu$g/dL) was significantly higher than that of mature term human milk (25.2${\pm}$7.55 $\mu$g/dL). Conclusion: The concentration of iron in preterm human milk was consistently low during the first 3 months of lactation. Supplementation with iron of at least 2 mg/kg/day should be considered for preterm infants who are exclusively breastfed and who have low body iron stores, to meet the minimum enteral iron requirements recommended by AAP-CON (2004).

Prediction of Energy Requirements for Maintenance and Growth of Female Korean Black Goats (번식용 교잡 흑염소의 유지와 성장을 위한 대사에너지 요구량 추정)

  • Lee, Jinwook;Kim, Kwan Woo;Lee, Sung Soo;Ko, Yeoung Gyu;Lee, Yong Jae;Kim, Sung Woo;Jeon, Da Yeon;Roh, Hee Jong;Yun, Yeong Sik;Kim, Do Hyung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • This study was conducted to predict the energy requirements for maintenance and growth of female Korean black goats during their growth and pregnancy phases. Fifty female goats ($18.7{\pm}0.27kg$) in their growth phase with an average age of 5 months were stratified by weight and randomly assigned into 5 groups. They were fed 5 diets varying in metabolic energy (ME) [2.32 (G1), 2.49 (G2), 2.74 (G3), 2.99 (G4), and 3.24 (G5) Mcal/kg] until they were 9-month-old. After natural breeding, 50 female goats ($30.7{\pm}0.59kg$) were stratified by weight and randomly assigned into 5 groups. They were fed 5 diets varying in ME [2.32 (P1), 2.43 (P2), 2.55 (P3), 2.66 (P4), and 2.78 (P5) Mcal/kg]. The average feed intake ranged between 1.5 and 2.0% of the body weight (BW), and there was no significant difference between the treatment groups with goats in growth or pregnancy phases. Average daily gain (ADG) in diet demand during the growth phase increased with an increasing ME density and ranged from 46 to 69 g/d (p<0.01). Feed conversion ratio (FCR) improved with the ME density during the growth phase (p<0.01). The intercept of the regression equation between ME intake and ADG indicated that energy requirement for maintenance of goats during growth and pregnancy phases was $103.53kcal/BW^{0.75}$ and $102.7kcal/BW^{0.75}$, respectively. These results may serve as a basis for the establishment of goat feeding standards in Korea. Further studies are required to assess the nutrient requirement of goats using various methods for improving accuracy.

The Physiologic change associated with aging, essential nutrients and their diseases in senior or geriatric dogs (노령견의 생리적 변화에 따른 필요 영양소 및 질병에 관한 연구)

  • Jung, Hyung-hak
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1456-1471
    • /
    • 2018
  • This article discusses the nutritional requirements, reviews senior or geriatric dog nutritional evaluation, and then addresses some common nutrition-related problems in older dogs. The purpose of this study was to investigate the Physiologic change associated with aging, essential nutrients and their diseases in senior or geriatric dog subjects. According to a 2002 market research, 30% to 40% of dogs raisedin the United States are 7 years of age. In Europe the number of dogs considered to be "senior or geriatric" (>7 years of age) increased by approximately 50% between 1983 and 1995. A 2012 e-mail survey of 50,347 respondents revealed that 33.2% of dogs were 6 to 10 years of age and 14.7% were older than 11 years in the United States. The average life expectancy of dogs raised in the home is affected by health care, aging and nutrition.And, the aging process is influenced by breed size, genetics, nutrition, environment, and other factors. Although many pets remain active and youthful well into their teens, most dogs start to slow down and may show signs of aging beginning as early as 5 or 6 years of age. Improvements in the control of various diseases and in the nutrition of dogs have resulted in a gradual increase in the average lifespan of companion dogs. Nutritional goals for aging dogs include supporting health and vitality, preventing the onset or slowing the progression of age-related health disorders, and enhancing the dog's quality of life and, if possible, life expectancy. Aging brings with its physiologicchanges. Some changes are obvious, such as whitening of hair, a general decline in body and coat condition, and failing senses including sight and hearing. Other changes are less obvious, however, and these include alterations in the physiology of the digestive tract, immune system, kidneys, and other organs. Nutritional requirements can change with age. In addition, many diseases common in older dogs may be nutrient-sensitive, meaning that diet can play an important role in the management of the condition.

Literature review and future tasks necessary to establish of Korean Dietary Reference Intake for choline (콜린의 한국인 영양소 섭취기준 제정 검토를 위한 문헌 고찰 및 향후 과제)

  • Shim, Eugene;Park, Jae-Hee;Lee, Yunjung;Park, Eunju
    • Journal of Nutrition and Health
    • /
    • v.55 no.2
    • /
    • pp.211-226
    • /
    • 2022
  • Choline, an essential nutrient for humans, is required for the structural integrity of the cell membranes, methyl-group metabolism, synthesis of the neurotransmitter acetylcholine, synthesis of the membrane phospholipid components of the cell membranes, and the transport of lipids and cholesterol. Choline can be synthesized in the body, but it is insufficient to meet the daily requirements and hence it must be obtained through the diet. In the United States/Canada, Australia/New Zealand, Europe, China, and Taiwan, the adequate intake (AI) and tolerable upper intake level (UL) of choline have been established, while the establishment of the 2020 Dietary Reference Intakes for Koreans (KDRI) for choline was postponed due to the lack of a choline database for Korean foods and studies on the choline intake of Koreans. However, as part of the preparation work for the 2020 DRI revision and finalization, choline intake and the possibility of disease occurrence were verified through analysis of published data. The groundwork for the subsequent establishment of a choline DRI was laid through a literature search, evaluation, and review of the literature reported from 1949 up to 2019. This can be regarded as the culmination of this project. According to the results of randomized controlled trials (RCTs), cohort studies, case-control studies, and cross-sectional observational studies in humans, approximately 400-500 mg/day of choline intake was effective in preventing liver function damage (fatty liver), neural tube damage, cardiovascular disease, breast cancer, and cognitive function improvement. The same amount of choline intake, however, also correlated with the risk of prostate and colorectal cancer. At present, there is limited information available on choline intake and health outcomes, particularly for the Korean population. More human studies, including clinical trials on the requirements and the physiological benefits associated with dietary intake, are needed to establish the KDRI for choline.

Influence of Nutritional Supplementation to the Substrate on Vegetative and Reproductive Growth of Winter Mushroom, Flammulina velutipes (Curt. ex Fr.) Sing. and Chemical Changes of the substrates Produced during Growth of the Fungus (톱밥 배지(培地)에 대(對)한 영양첨가(營養添加)가 팽이버섯의 생장(生長)및 배지(培地)의 화학적(化學的) 성분(成分) 변화(變化)에 미치는 영향(影響))

  • Chang, Hak-Gil
    • The Korean Journal of Mycology
    • /
    • v.4 no.1
    • /
    • pp.31-44
    • /
    • 1976
  • The studies were carried out to examine the effects of supplementation of nutritional substances and physical conditions in substrate on the mycelial growth and yield of fresh sporophores of winter mushroom, Flammulina velutipes(Curt. ex Fr.) Sing. and to obtain further informations on the nutritional requirements of the fungus with reference to improvement of substrate through [analysis of chemical composition of the substrates during the cultivation period. The results obtained are summarized as follows: 1. The best yield of fresh sporophores, 84.4 g per 280 g substrate in a bottle, was obtained from the mixture of poplar sawdust 10 and rice bran 3 by volume when Flammulina velutipes was cultivated on the poplar sawdust supplemented by rice bran, wheat bran, cattle manure and various combinations of these materials as nutrient sources. The substrates of poplar sawdust 10 plus rice bran 3 and 2 or wheat bran 3 with a higher yield of fresh sporophores showed a comparatively higher content of total nitrogen. total sugar, and potassium. 2. The mycelial growth of the fungus was compared on the substrates of poplar sawdust supplemented by the several nutrient sources and poplar sawdust alone. The fastest linear growth occurred on substrates of poplar sawdust alone and poplar sawdust plus cattle manure deficient in sugar and nitrogen sources, but mycelial density was more sparse on the substrates. Also, growth in a solution extracted from these substrates was very meager. 3. In the substrates which varied with bulk density and moisture content optimum bulk density and moisture content for mycelial growth was 0.2g/cc and 72% on a dry weight basis, respectively, but the highest yield of fresh sporophores was obtained at the bulk density of 0.3g/cc and moisture content of 67%. 4. By increasing the ratio of rice bran in poplar sawdust the loss of total weight and ash, content at each stage was increased, and during the cultivation period of 75 days, loss of total weight of the substrates at inoculation was 17.8 to 28.8% and ash content increased about 12%. 5. 11 to 14% of the cellulose and 3 to 4% of the lignin content per original substrate were decreased without a great difference depending of the mixing ratio of rice bran. The soluble glucose concentration in the substrates was increased during the same period. 6. In the process of vegetative and reproductive growth of the fungus upon the substrates, the total nitrogen was increased in quantity per dry weight of sample but was reduced in absolute quantity to a minute extent. There is no great changes in content of organic nitrogen including amino acid nitrogen, and hydrolysable ammonium nitrogen during the vegetative growth period, but occurrence of sporophores resulted in a decrease in the nitrogen content of these forms. On the one hand, by an increase of additive amounts of rice bran, nitrogen contents of these forms were higher and the reduction range during the reproductive growth period became wider. 7. Mycelial growth of the fungus was accelerated in various liquid media supplemented with organic nitrogen sources such as peptone and yeast extract in comparison with addition of inorganic nitrogen sources. Furthermore, mycelial growth was mere vigorous in the media with higher content of organic nitrogen sources.

  • PDF

Evaluation of Possibility of Water Plant Wastes in Composting for Agricultural Recycling (수생식물 고사체의 농업적 재활용을 위한 퇴비화 가능성 평가)

  • Choi, Ik-Won;Seo, Dong-Cheol;Kang, Se-Won;Seo, Young-Jin;Lee, Sang-Gyu;Kang, Seog-Jin;Lim, Byung-Jin;Lee, Jun-Bae;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.248-252
    • /
    • 2012
  • To evaluate the possibility of water plant wastes in composting for agricultural recycling, Phragmites communis (PHRCO), Typha orientalis (TYHOR) and Zizania latifolia (ZIZLA) were used as a compost materials. In composting basin, cumulative oxygen consumptions of the compost used by water plant wastes were rapidly increased at the early stage and slightly decreased in around 15 days. Cumulative oxygen consumptions under different water plant wastes were higher in the order of TYHOR > ZIZLA > PHRCO. Temperature changes during composting process were rapidly increased at the early stage and then slowly decreased to $30{\sim}40^{\circ}C$. The maximum temperatures were higher in the order of ZIZLA ($72.2^{\circ}C$ at 11 days after starting composting) > TYHOR ($70.2^{\circ}C$ at 10 days after starting composting) > PHRCO ($66.5^{\circ}C$ at 7 days after starting composting). Oxygen consumptions at maximum temperature were higher in the order of TYHOR ($12,485mg\;O_2\;kg^{-1}$) > ZIZLA ($12,400mg\;O_2\;kg^{-1}$) > PHRCO ($9,340mg\;O_2\;kg^{-1}$). Organic matter contents, moisture contents and OM/N rates in the compost ranged 39.5~44.8%, 29.6~35.6% and 27.9~32.9, respectively. Considering that water plant waste can supply some of the nutrient requirements of crops and is a valuable fertilizer.

Evaluation of Design and Operation Parameters for a Spherical Sulfur Denitrification Reactor Treating High Strength Municipal Wastewater (고농도 도시하수 처리를 위한 입상황 탈질 반응조의 설계 및 운영인자 평가)

  • Kim, Yong-Hak;Chae, Kyu-Jung;Yim, Seong-Keun;Lee, Young-Man;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1087-1093
    • /
    • 2010
  • Autotrophic denitrification is known as an effective and economical alternative for heterotrophic denitrification using external carbon sources such as methanol. In this study, we evaluated design and operation parameters for a sulfur denitrification reactor (SDR) treating high strength nitrogen wastewater. The SDR was filled with spherical sulfur media in connected to a pilot-scale nutrient removal process (daily flow rate, $Q=18\;m^3/d$) using moving spongy media. Total nitrogen (TN) concentration of the final effluent was below the 7.0 mg TN/L because nitrate was additionally removed through autotrophic denitrificationin without adding alkalinity (initial alkalinity was $169.4{\pm}20.8\;mg$ $CaCO_3$/L). During the test period, 60~80% of nitrogen in the influent was removed even in low temperature (below $15^{\circ}C$). The alkalinity consumption for nitrate removal in SDR was $4.09{\pm}1.29$ g $CaCO_3/g$ ${NO_3}^-$-N, and the residual alkalinity of influent of SDR was higher than that of theoretical requirements for full conversion of nitrate. The consumption of sulfur was 943.8 g S/d and it was 2.4 times higher than theoretical value (400.1 g S/d) due to abrasion and loss of sulfur media in backwash, etc.

Quality Evaluation of Domestic and Foreign Extruded Pellets and Moist Pellet Based on Biochemical Analyses for Juvenile Olive Flounder, Parazichthys Olivaceus (시판용 넙치(치어)사료의 성분 비교분석을 통한 품질평가)

  • 최세민;한경민;왕소길;이승형;배승철
    • Journal of Aquaculture
    • /
    • v.17 no.2
    • /
    • pp.144-150
    • /
    • 2004
  • This experiment was conducted to evaluate the parameters such as nutrient requirements, POY, AnV, Totox, VBN, total plate count, dietary fatty acids and amino acids composition, that are not included in the registered standard composition items required by the Ministry of Agriculture and Forestry, of a moist pellet (MP), three domestic extruded pellets (DEP-1, DEP-2, DEP-3), and two foreign extruded pellets (FEP-1, FEP-2) that are utilized by domestic flounder farms at present. The crude protein was added in excess of the dietary protein requirement in 6 kinds of feeds. When considering the proper PH ratio, it is obvious that protein was added in excess, especially in MP and FEP-2. Crude fat was also added in excess, especially in FEP-1. MP contained a higher dietary phosphorus content than formulated feeds, surpassing the dietary phosphorus requirement and greatly increasing the possibility for causing water pollution. The oxidation of fatty acid and decomposition of protein in MP were higher than in formulated feeds, and may also cause problems on fish farms. Also, it is difficult to store and manage MP, Among the fatty acids, EPA and DHA contents in MP were higher than those in formulated feeds. It is necessary to conduct further studies of EPA and DHA contents in formulated feeds. Lysine content in MP and FEP-2 could meet the dietary lysine requirement of flounder, however, the possibility of insufficient lysine content in the other formulated feeds was high and we considered that extra supplementation was necessary. Therefore, it is necessary to set up quality control standards according to fish species and sizes while considering the specific character of aquatic formulated feeds to restore the confidence of feed companies and aquaculturists to these feeds. This may be an opportunity to make an earlier change from MP to formulated feeds.