• Title/Summary/Keyword: Nutrient Removals

Search Result 19, Processing Time 0.02 seconds

Pilot Plant Study on Biological Nutrient Removal of Wastewater

  • Ahn, Sang-Jin;Kim, Geon-Heung;Ahn, Bok-Kyoun
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.99-106
    • /
    • 1990
  • An extensive biological nutrient removal pilot plant study of anoxic/anaerobic/ aerobic treatment process was conducted to eastblish an optimum operational mode using primary dffluent. Two operational modes, (1) Qr/Q was 3.0 and maintaining EMLSS of 3100 mg/L in which the best operational results were obtained from previous bench scale study using synthetic wastewater (2) Qr/Q was 0.5 and EMLSS of 2200 mg/L which was compatible with the main plant, were Compared and evaluated for removal of nitrogen and/or phosphorous under field conditions. The nitrogen removal increased with increasing recycle ratios, but the phosphorous removal revealed more consistent results with 83percent removal efficiency in the second mode compared with 80 percent in the first mode. Above all, the two modes equally showed good BOD and nitrogen removals by nitrification-denitrification processes. It was also observed that no scum formed in the pilot plant and the sludge exhibited excellent settling characteristic all the time. The modified biological nutrient removal train can be adopted to the main plant without any major changes of their operational modes.

  • PDF

Design of Optimal Water Treatment Processes based on Required Water Quality for Utilization of the Saemanguem Lake Water (새만금 담수 활용을 위한 요구수질별 최적의 수처리 방안 연구)

  • Choi, Kyung-Sook;Lee, Kwang-Ya
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.169-178
    • /
    • 2012
  • This study was aimed at providing optimal water treatment processes based on various required water quality for utilization of the Saemangeum lake water as water supply alternatives to this area. Various water treatment methods were considered for investigation there characteristics, pollution removal rate, pros and cons in order to select appropriate water treatment processes satisfying the required water quality for different purposes. As results, the FDA system for SS, turbidity, BOD removals, UV treatment for coliform, BOD removals, FNR process for T-N, T-P removals, and ECRS process for desalination purpose were found to be better methods in senses of removal efficiency, operation and maintenance. Case studies were provided with cost analysis for field applications in the Saemangeum area.

Annual Removal of Soil Nutrient by Stem Harvest in a Willow (Salix spp.) Plantation (버드나무(Salix spp.) 조림지내 벌채에 의한 년간 토양양분 수탈)

  • Park, Gwan-Soo;Adegbidi, Hector
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.384-391
    • /
    • 1998
  • Nutrient removal during stem harvest was evaluated in a one-year rotation willow bioenergy plantation. For the stem nutrient content, the stem biomass and stem nutrient concentration were collected in the winter of 1987-1993 from the established willow plantation at Tully, New York, U.S.A. in 1987. Five willow clones and one hybrid poplar clone were planted. Half of the plots were fertilized annually with $336kg\;ha^{-1}$ N, $112kg\;ha^{-1}$ P, and $224kg\;ha^{-1}$ K. All trees were harvested annually. Mean annual nutrient removals of N, P, K, Ca, and Mg by annual stem harvesting over seven years were respectively 30-70, 4-10, 14-40, 19-59 and $3-5kg\;ha^{-1}$. Fertilized plants exported higher quantities of nutrients than non-fertilized ones. Nontheless, quantities of nutrients exported were well below the quantities supplied by fertilization suggesting that nutrients removal by stem harvesting is not likely to cause a decrease in soil fertility. However, in non-fertilized plots, the amount of nutrients removed could result in decrease of nutrient availability and soil fertility over the long-term. An evaluation of the clones revealed that clone SV1 is the most nutrient efficient.

  • PDF

Performances of Intermittently Aerated and Dynamic Flow Activated Sludge Process (2단간헐폭기 및 유로변경 간헐폭기 활성슬러지 시스템을 이용한 도시하수 처리)

  • 원성연;민경국;이상일
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.26-31
    • /
    • 1998
  • Removal of nitrogen and phosphate in wastewater is concerned to important for the prevention of eutrophication in receiving water and lake. Conventional activated sludge system designed for organics removal can be retrofitted only by modification of aeration basin to maintain anaerobic and aerobic state. Biological nutrient removal processes(BNR) such as Bardenpho, A$^{2}$/O, UCT, VIP were generally used for the treatment of wastewater. However these BNR processes used in large scale WWTP were not suitable in small scale WWTP(i.e., package type WWTP) due to relatively large fluctuation of flow rate and concentration of pollutants. The purpose of this research was to develop the compact, effective and economical package type WWTP for the removals of carbon and nitrogen in small scale wastewater. Intermittently aerated activated sludge system (IADFAS) were investigated for removal of nitrogen in both domestic wastewater, Bardenpho process was also evaluated. Nitrogen removal of IAAS, IADFAS, Bardenpho were 75, 77 and 67%, respectively.

  • PDF

Characterization of Algal-Bacterial Ecological Interaction and Nutrients Removal Under Municipal Wastewater Condition (실제 하수조건에서 조류-세균 복합군집의 생태적 상호작용 및 영양염류 제거 특성 규명)

  • Lee, Jang-Ho;Park, Joon-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.314-324
    • /
    • 2011
  • Algal biomass cultivated by wastewater is potentially useful resource for biodiesel production. However, little is known about algal nutrient metabolism and microbial interaction with bacteria under real municipal wastewater condition. In this work, we characterized nitrogen and phosphorus removals of municipal wastewater by a representative wastewater-growing algal population. Ankistrodesmus gracilis SAG 278-2, and analyzed its ecological interaction with wastewater bacterial communities. Compared to wastewater sludge itself, algal-bacterial co-culture improved nutrient removal. According to bacterial community analysis with 16S rRNA genes, a selective and dominant growth of a Unclassified Alcaligenaceae population resulted from algal growth in the algal-bacterial co-culture. The selectively stimulated bacterial population is phylogenetically close to Alcaligenes faecalis subsp. 5659-H, which is known to be co-present interact with algae in aquatic environment. These findings suggest that algal growth/metabolism may have effects on selection of a specific bacterial population in algal-bacterial co-cultures that can efficiently remove nutrients from municipal wastewater.

Stability Evaluation of Phased Isolation Intra-Clarifier Ditch Process on Short-Term Hydraulic Shock Loading (단기 수리학적 충격부하시 침전지 내장형 상분리 산화구공정의 처리 안정성 평가)

  • Hong, Ki-Ho;Chang, Duk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.791-799
    • /
    • 2005
  • The phased isolation intra-clarifier ditch system used in this study is a simplified novel process enhancing simultaneous removal of biological nitrogen and phosphorus in municipal wastewater in terms of elimination of additional pre-anaerobic reactor, external clarifier, recycle of sludge, and nitrified effluent recirculation by employing intrachannel clarifier. Laboratory-scale phased isolation ditch system was used to assess the treatability on municipal wastewater. When the system was operated at the HRTs of 6~12hours, SRTs of 9~31days, and cycle times of 2~8hours, the system showed removals of BOD, TN, and TP as high as 88~97%, 70~84%, and 65~90%, respectively. The rainfall in Korea is generally concentrated in summer because of site-specific characteristics. Especially, the wet season has set in on June to August. In combined sewers, seasonal variations are primarily a function of the amount of stormwater that enters the system. In order to investigate the effect of hydraulic shock loading on system performance, the laboratory-scale system was operated at an HRT of 6hours (two times of influent flowrate) during two cycles (8hours). The system performance slightly decreased by increasing of influent flowrate and decreasing of system HRT. Nitrification efficiency and TN removal were slightly decreased by increasing of influent flowrate (decreasing of system HRT), whereas, the denitrification was not affected by hydraulic shock loading. However, the higher system performance could be achieved again after four cycles. Thus, the phased isolation technology for enhanced biological nutrient removal in medium- and small-scale wastewater treatment plants suffering fluctuation of influent quality and flowrate.

Performance Evaluation of Advanced Municipal Wastewater Tretment by Phased Isolation Intrachannel Clarifier Ditch (침전지내장형 상분리 산화구공정에 의한 하수 고도처리특성 평가)

  • Hong, Ki-Ho;Chang, Duk;Han, Sang-Bae
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.563-570
    • /
    • 2004
  • Phased isolation intrachannel clarifier ditch process developed in this study is an enhanced biological nutrient removal process employing two ditches with intrachannel clarifiers. Bench-scale phased isolation ditch process was used to evaluate the system performance on municipal wastewater and detailed assessment of internal behavior in a ditch and each reactions. When the system was operated at the HRTs of 6~12hours, SRTs of 9~31 days, and cycle times of 4hours, the system showed removals of BOD, TN, and TP as high as 88~97%, 73~78%, and 65~90%, respectively. The internal behavior were well matched on each reactions such as nitrification, denitrification, and phosphorus release and uptake. As the SRT became longer, TN removal increased gradually, whereas TP removal decreased contrarily. However, the system was capable of producing an effluent TP concentration 1mg/L or less even at longer SRTs except the case of solids discharge by malfunction of intra-clarifier occurred by its geometrical limit. The system performance slightly decreased by hydraulic shock loading(increasing of influent flowrate and decreasing of system HRT). However, the higher system performance could be achieved again after four cycles. Thus, the system reliability could be successfully achieved short-term hydraulic shock loading that occurred in medium- and small-sized wastewater treatment plants suffering fluctuation of influent quality and flowrate during wet season.

A Study on Efficiency of SBR Process by Composition of Artificially Wastewater (인공하수 조성 성분에 따른 SBR 처리 공정의 효율에 관한 연구)

  • Lee Jang-Hoon;Jang Seung-Cheol;Kwon Hyuk-Ku;Kim Dong Wook
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.2 s.83
    • /
    • pp.99-106
    • /
    • 2005
  • The removals of organic matter, nitrogen and phosphate in wastewater were investigated with Sequencing Batch Reactor (SBR). Glucose and sodium acetate were Used for organic carbon source so as to know nutrient removal efficiency in proportion to MLSS concentration. In the case of glucose, the COD removal rate was $74\%,\;41\%\;and\;66\%$ in MLSS 5000, 3000 and 1000, respectively. On equal terms, the BOD was $57\%,\;21\%\;and\;38\%$, the T-N was $24\%,\;13\%\;and\;44\%$, and the T-P was $12\%,\;21\%\;and\;33\%$. As a result, the removal rate of organic materials showed the finest remove when MLSS was 5000, but the nutrient removal rate appeared as was best when MLSS was 1000. In the case of sodium acetate, the COD removal rate was $83\%,\;81\%\;and\;86\%$ in MLSS 5000, 3000 and 1000, respectively. On equal terms, the BOD was appeared by $76\%,\;82\%\;and\;92\%$, the T-N $57\%,\;42\%\;and\;78\%$, and the T-P $48\%,\;52\%\;and\;38\%$. As a result, organic and T-N removal rates were best when MLSS was 1000. But, the T-P removal rates were best when MLSS was 3000. Glucose was shown fast removal in reaction beginning, but screened by more efficient thing though sodium acetate removes organic matter, nitrogen and phosphate. Form of floc was ideal in all reactors regardless of carbon source and MLSS concentration. And its diameter was about $200\~500{\mu}m$.

Application of tube-type ceramic microfiltration membrane for post-treatment of effluent from biological wastewater treatment process using phase separation

  • Son, Dong-Jin;Kim, Woo-Yeol;Yun, Chan-Young;Kim, Dae-Gun;Chang, Duk;Sunwoo, Young;Hong, Ki-Ho
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.377-383
    • /
    • 2017
  • A tube-type ceramic membrane for microfiltration was developed, and the membrane module comprised of three membranes was also applied to biological carbon and nitrogen removal processes for post-treatment. Manufacturing the microfiltration membrane was successful with the structure and boundary of the coated and support layers within the membrane module clearly observable. Total kjeldahl nitrogen removal from effluent was additionally achieved through the elimination of solids containing organic nitrogen by use of the ceramic membrane module. Removal of suspended solids and colloidal substances were noticeably improved after membrane filtration, and the filtration function of the ceramic membrane could also easily be recovered by physical cleaning. By using the ceramic membrane module, the system showed average removals of organics, nitrogen, and solids up to 98%, 80% and 99.9%, respectively. Thus, this microfiltration system appears to be an alternative and flexible option for existing biological nutrient removal processes suffering from poor settling performance due to the use of a clarifier.

The Characteristics and Biomass Distribution in Crown of Larix olgensis in Northeastern China

  • Chen, Dongsheng;Li, Fengri
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.2
    • /
    • pp.204-212
    • /
    • 2010
  • This study was performed in 22 unthinned Larix olgensis plantations in northeast China. Data were collected on 95 sample trees of different canopy positions and the diameter at breast height ($d_{1.3}$) ranged from 5.7 cm to 40.2 cm. The individual tree models for the prediction of vertical distribution of live crown, branch and needle biomass were built. Our study showed that the crown, branch and needle biomass distributions were most in the location of 60% crown length. These results were also parallel to previous crown studies. The cumulative relative biomass of live crown, branch and needle were fitted by the sigmoid shape curve and the fitting results were quite well. Meanwhile, we developed the crown ratio and width models. Tree height was the most important predictor for crown ratio model. A negative competition factor, ccf and bas which reflected the effect of suppression on a tree, reduced the crown ratio estimates. The height-diameter ratio was a significant predictor. The higher the height-diameter ratio, the higher crown ratio is. Diameter at breast height is the strongest predictor in crown width model. The models can be used for the planning of harvesting operations, for the selection of feasible harvesting methods, and for the estimation of nutrient removals of different harvesting practices.