• 제목/요약/키워드: Nutrient Loss

검색결과 338건 처리시간 0.026초

정량펌프를 이용한 무토양재배시스템의 증산량 추정 및 그 응용 (Estimation of Transpiration Rate with a Metering Pump and its Application in Soilless Culture System)

  • 손정익;박종석
    • 원예과학기술지
    • /
    • 제16권1호
    • /
    • pp.25-26
    • /
    • 1998
  • 본 연구는 정량펌프를 이용한 정확한 증산량 추정 시스템의 구축 및 측정된 증산량과 환경요인과의 관계를 분석하는 데 있다. 정량펌프에 의한 양액공급 및 증산량 추정 시스템은 매우 안정적인 특성을 나타냈으며, 증산량 추정을 위하여 재배 시스템에 설치한 정량펌프의 공급시간과 투입량과의 관계는 직선관계를 나타냈다. NFT 및 고형배지 시스템에서의 적산일사량과 증산량을 실측한 결과 증산량은 일사량에 직접적인 영향을 받고 있었으며, NFT는 상관계수 0.98. 고형배지는 상관계수 0.92의 높은 상관관계를 나타내었다. 따라서 정량펌프에 의한 증산량 추정은 양액급액 제어에 효율적인 방법이며, 이러한 방법을 사용하여 적산일사량에 의한 관수량 조절 및 비료투입량의 결정에 적용이 가능하다. 따라서, 측정된 적산일사량에 의하여 증산량 추정이 가능하기 때문에, 정량펌프에 의하여 필요 관수량을 정확한 공급할 수 있다.

  • PDF

Nutrient dynamics in decomposing litter from four selected tree species in Makurdi, Benue State, Nigeria

  • Okoh, Thomas;Edu, Esther
    • Journal of Ecology and Environment
    • /
    • 제43권4호
    • /
    • pp.376-384
    • /
    • 2019
  • Background: Nutrient release during litter decomposition was investigated in Vitex doniana, Terminalia avecinioides, Sarcocephallus latifolius, and Parinari curatellifolius in Makurdi, Benue State Nigeria (January 10 to March 10 and from June 10 to August 10, 2016). Leaf decomposition was measured as loss in mass of litter over time using the decay model Wt/W0 = e-kd t, while $Kd=-{\frac{1}{t}}In({\frac{Wt}{W0}})$ was used to evaluate decomposition rate. Time taken for half of litter to decompose was measured using T50 = ln 2/k; while nutrient accumulation index was evaluated as $NAI=(\frac{{\omega}t\;Xt}{{\omega}oXo})$. Results: Average mass of litter remaining after exposure ranged from 96.15 g, (V. doniana) to 78.11 g, (S. lafolius) in dry (November to March) and wet (April to October) seasons. Decomposition rate was averagely faster in the wet season (0.0030) than in the dry season (0.0022) with P. curatellifolius (0.0028) and T. avecinioides (0.0039) having the fastest decomposition rates in dry and wet seasons. Mean residence time (days) ranged from 929 to 356, while the time (days) for half the original mass to decompose ranged from 622 to 201 (dry and wet seasons). ANOVA revealed highly significant differences (p < 0.01) in decomposition rates and exposure time (days) and a significant interaction (p < 0.05) between species and exposure time in both seasons. Conclusion: Slow decomposition in the plant leaves implied carbon retention in the ecosystem and slow release of CO2 back to the atmosphere, while nitrogen was mineralized in both seasons. The plants therefore showed effectiveness in nutrient cycling and support productivity in the ecosystem.

영양교육에 의한 체중감소군과 체중증가군의 식습관 및 식사의 질 평가 - 여대생을 대상으로 - (Effectiveness of Nutrition Education on Dietary Habits and Diet Quality in the Weight Loss and Weight Gain Groups in College Women)

  • 이승희;장남수
    • Journal of Nutrition and Health
    • /
    • 제40권5호
    • /
    • pp.463-474
    • /
    • 2007
  • This study attempted to evaluate the effectiveness of nutrition education especially high nutrient density diet, which promotes low carbohydrate, high protein and fiber. Sixty nine college students participated in the 8 week weight management program with nutrition education. After the program, forty six experienced a small amount of weight loss (WL group, 1.3 kg), but twenty three did not (WG group). The WL group's dietary habits and diet quality improved significantly. The INQ of nutrients and MAR significantly increased only in the WL group. The total DQI-I score significantly increased from 71.1 to 75.3 in the WL group, but it did not in the WG group. The total dietary habit scores significantly increased in both groups, but the changes in the dietary habit scores were greater than the WG group in the WL group. After the program, total cholesterol and triglyceride level decreased significantly in the WL group (p < 0.05). These results show that nutrition education which focuses on a nutrient density diet could help improve dietary habits, diet quality, total cholesterol, and the triglyceride level in college women.

Weight Loss and Nutrient Dynamics during Leaf Litter Decomposition of Quercus variabilis and Pinus densiflora at Mt. Worak National Park

  • NamGung, Jeong;Han, A-Reum;Mun, Hyeong-Tae
    • Journal of Ecology and Environment
    • /
    • 제31권4호
    • /
    • pp.291-295
    • /
    • 2008
  • Weight loss and nutrient dynamics of oak and pine leaf litter during decomposition were investigated from December 2005 through June 2008 at Mt. Worak National Park as a part of National Long-Term Ecological Research Program in Korea. The decay constant (k) of oak and pine leaf litter were 0.314 and 0.217, respectively. After 30 months decomposition, remaining weight of oak and pine leaf litter was 45.5% and 58.1%, respectively. Initial C/N ratio of oak and pine leaf litter was 53.4 and 153.0, respectively. Carbon % of initial oak and pine leaf litter was similar with each other; however, nitrogen content of initial oak leaf litter (0.85%) was greater than that of initial pine leaf litter (0.33%). N and P concentration in both decomposing leaf litter increased significantly during decomposition. There was no net N and P mineralization period in decomposing pine leaf litter. K, Ca and Mg concentration in both decomposing leaf litter showed different pattern with those of N and P. After 30 months decomposition, remaining nutrients in oak and pine leaf litter were 97.7 and 216.2% for N, 123.2 and 216.5% for P, 39.3 and 44.8% for K, 47.9 and 40.6% for Ca, 30.7 and 51.2% for Mg, respectively.

Nutrient Losses from a Paddy Field

  • Cho, Jae-Young;Han, Kang-Wan
    • Journal of Applied Biological Chemistry
    • /
    • 제43권4호
    • /
    • pp.258-263
    • /
    • 2000
  • The study was carried out to investigate the nutrient losses at a paddy field located at the southwest of central Korea from May 1, 1997 to April 30, 1998. The studying area was 10 ha. The amounts of nutrients loaded by runoff water were measured as follows. The total-N was 1,031 and $61kg\;10ha^{-1}$ during the irrigation and non-irrigation periods, respectively. The total amount of N from both periods was $1,092kg\;10ha^{-1}\;yr^{-1}$. The total-P was 23 and $2kg\;10ha^{-1}$ during the irrigation and non-irrigation periods, respectively. The total amount of P from both periods was $25kg\;10ha^{-1}\;yr^{-1}$. For percolationloss, the losses of total-N, ammonia-N, nitrate-N, and total-P were 167,30,122, and $3kg\;10ha^{-1}$, respectively. The respective loss ratios of N and P by runoff water were 55.2 and 11.9%, while the loss ratios of N and P by percolationwere 8.4 and 1.4%.

  • PDF

Nutrient Leaching from Leaf Litter of Cropland Agroforest Tree Species of Bangladesh

  • Hasanuzzaman, Md.;Hossain, Mahmood
    • Journal of Forest and Environmental Science
    • /
    • 제30권2호
    • /
    • pp.208-217
    • /
    • 2014
  • Leaf litter is the main and quick source of organic matter and nutrient to the soil compared to other parts of litter. This study focused on the nutrients (N, P and K) leaching from leaf litter of Melia azadirachta, Azadirachta indica, Eucalyptus camaldulensis, Swietenia macrophylla, Mangifera indica, Zizyphus jujuba, Litchi chinensis, Albizia saman, Artocarpus heterophyllus, Acacia auriculiformis, Dalbergia sissoo and Khaya anthotheca as the common cropland agroforest tree species of Bangladesh. About (9 to 35) % of initial mass was lost, while Electric Conductivity (EC) and TDS (Total Dissolved Solid) of leaching water increased to (573 to 3,247) ${\mu}S/cm$ and (401 to 2,307) mg/l respectively after 192 hours of leaching process. Mass loss (%) of leaf litter, EC and TDS of leaching water showed significant (ANOVA, p<0.05) curvilinear relationship with leaching time. Initial concentration of NH4, PO4 and K in leaching water was found to increase significantly (p<0.05) up to 48/72 hours and then remained almost constant at later stages (48/72 to 192 hours). Mass loss of leaves; EC, TDS, $NH_4$, $PO_4$ and K in leaching water was varied also significantly (ANOVA, p<0.05) among the studied tree species. All the tree species showed similar pattern of nutrients (K>N>P) release during the leaching process. The highest $NH_4$ (4,097 ppm) and potassium (8,904 ppm) concentration was found for M. azadirachta while the highest $PO_4$ (1,331 ppm) concentration was found for E. camaldulensis in the leaching water. Among the studied tree species, M. azadirachta, A. indica, D. sissoo, E. camaldulensis and Z. jujuba was selected as the best tree species with respect to nutrient leaching.

호소 부영양화에 있어서 산림임반으로부터 질소부하 평가를 위한 조사 (Prediction of Nitrogen Loading from Forest Stands in Eutrophication of Lake)

  • 정덕영;이영한;이진호;박미숙
    • 한국토양비료학회지
    • /
    • 제43권4호
    • /
    • pp.430-437
    • /
    • 2010
  • The continuous release of nutrient sources into natural water resource can be a continuing problem in eutrophication, as well as severe reductions in water quality. However, any desirable measure is not developed yet even though so many researches and efforts have been done to solve this problem. Forest as one of troublesome nonpoint sources may contributes most to nutrient loading, but the loading of N and P from forest in order to grasp the eutrophication potential of nonpoint sources has not been evaluated. The nutrient sources from the organic litter accumulated on the surface of forest soils can be a critical factor in continuity of eutrophication of a lake. The decomposition rate of litter can be estimated to predict release of N and P from the forest stand. The loss rate of nitrogen is complicated but depends in part upon the physical matrix of the element. Therefore, long-term nutrient budget and flux estimates at stand would be useful tools in calculating potential nutrient fluxes into the watercourses in a sustainable way. The present investigation can give insight to the actual situation of the eutrophication potentials of forest as the practical nonpoint sources.

제주도 사질 조간대 공극수중 영양염류의 시·공간적 변화 (Temporal and Spatial Variation of Nutrient Concentrations in Shallow Pore Water in Intertidal Sandflats of Jeju Island)

  • 황동운;김형철;박지혜;이원찬
    • 한국수산과학회지
    • /
    • 제45권6호
    • /
    • pp.704-715
    • /
    • 2012
  • To examine temporal and spatial variation in salinity and nutrients in the shallow pore water of intertidal sandflats, we measured salinity and nutrient concentrations (dissolved inorganic nitrogen [DIN], phosphorus [DIP], and silicate [DSi]) in pore water of the intertidal zone along the coastline of Jeju Island at two and/or three month intervals from May 2009 to December 2010. Geochemical parameters (grain size, ignition loss [IL], chemical oxygen demand [COD], and acid volatile sulfur [AVS]) in sediment were also investigated. The surface sediments in intertidal sandflats of Jeju Island were mainly composed of sand, slightly gravelly sand and gravelly sand, with a range of mean grain size from 0.5 to 2.5 ${\O}$. Concentrations of IL and COD in sediment were higher along the eastern coast, as compared to the western coast, due to differences in biogenic sediment composition. Salinity and nutrient concentrations in pore water were markedly different across time and space during rainy seasons, whereas concentrations were temporally and spatially more stable during dry seasons. These results suggest that salinity and nutrient concentrations in pore water depend on the advective flow of fresh groundwater. We also observed an imbalance of the DIN/DIP ratio in pore water due to the influence of contaminated sources of DIN. In particular, nutrient concentrations during rainy and dry seasons were characterized by high DIN/DIP ratios (mean-127) and low DIN/DIP ratios (mean-10), respectively, relative to the Redfield ratio (16) in offshore seawater. Such an imbalance of DIN/DIP ratios in pore water can affect the coastal ecosystem and appears to cause outbreaks of benthic seaweed along the coastline of Jeju Island.