• 제목/요약/키워드: Numerical wave simulation

검색결과 851건 처리시간 0.025초

디지털 파랑 수조 내에서의 비선형 파랑 운동의 수치시뮬레이션 (NUMERICAL SIMULATIONS OF FULLY NONLINEAR WAVE MOTIONS IN A DIGITAL WAVE TANK)

  • 박종천;김경성
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.90-100
    • /
    • 2006
  • A digital wave tank (DWT) simulation technique has been developed by authors to investigate the interactions of fully nonlinear waves with 3D marine structures. A finite-difference/volume method and a modified marker-and-cell (MAC) algorithm have been used, which are based on the Navier-Stokes (NS) and continuity equations. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique or the Level-Set (LS) technique developed for one or two fluid layers. In this paper, some applications for various engineering problems with free-surface are introduced and discussed. It includes numerical simulation of marine environments by simulation equipments, fully nonlinear wave motions around offshore structures, nonlinear ship waves, ship motions in waves and marine flow simulation with free-surface. From the presented simulations, it seems that the developed DWT simulation technique can handle various engineering problems with free-surface and reliably predict hydrodynamic features due to the fully-nonlinear wave motions interacting with such marine structures.

해양환경공학의 다목적 시뮬레이션을 위한 수치파랑수조 기술 (Numerical Wave Tank Technology for Multipurpose Simulation in Marine Environmental Engineering)

  • 박종천
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.1-7
    • /
    • 2003
  • A virtual reality technology for multipurpose numerical simulation is developed to reproduce and investigate a variety of ocean environmental problems in a 3D Numerical Wave Tank(NWT). The governing equations for solving incompressible fluid motion are Navier-Stokes equation and continuity equation. The Marker-Density function technique is adopted to implement the fully nonlinear freesurface kinematic condition. The marine environmental situations, i.e., waves, currents, etc., are reproduced by use of multi-segmented wavemakers on the basis of the so-called ″snake-principle″. In this paper, some numerical reproduction techniques for regular, and irregular waves, multi-directional waves, Bull's-eye wave. wave-current, and solitary wave are presented, and a model test in motion with large amplitude of roll angle is conducted in the developed 3D-NWT, using a overlaid grid system.

NUMERICAL SIMULATION OF TWO-DIMENSIONAL FREE-SURFACE FLOW AND WAVE TRANSFORMATION OVER CONSTANT-SLOPE BOTTOM TOPOGRAPHY

  • DIMAKOPOULOS AGGELOS S;DIMAS ATHANASSIOS A
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회(2)
    • /
    • pp.842-845
    • /
    • 2005
  • A method for the numerical simulation of two-dimensional free-surface flow resulting from the propagation of regular gravity waves over topography with arbitrary bottom shape is presented. The method is based on the numerical solution of the Euler equations subject to the fully nonlinear free-surface boundary conditions and the appropriate bottom, inflow and outflow conditions using a hybrid finite-differences and spectral-method scheme. The formulation includes a boundary-fitted transformation, and is suitable for extension to incorporate large-eddy simulation (LES) and large-wave simulation (LWS) terms for turbulence and breaking wave modeling, respectively. Results are presented for the simulation of the free-surface flow over two different bottom topographies, with constant slope values of 1:10 and 1:20, two different inflow wave lengths and two different inflow wave heights. An absorption outflow zone is utilized and the results indicate minimum wave reflection from the outflow boundary. Over the bottom slope, lengths of waves in the linear regime are modified according to linear theory dispersion, while wave heights remain more or less unchanged. For waves in the nonlinear regime, wave lengths are becoming shorter, while the free surface elevation deviates from its initial sinusoidal shape.

  • PDF

Numerical simulation of wave and current interaction with a fixed offshore substructure

  • Kim, Sung-Yong;Kim, Kyung-Mi;Park, Jong-Chun;Jeon, Gyu-Mok;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권2호
    • /
    • pp.188-197
    • /
    • 2016
  • Offshore substructures have been developed to support structures against complex offshore environments. The load at offshore substructures is dominated by waves, and deformation of waves caused by interactions with the current is an important phenomena. Wave load simulation of fixed offshore substructures in waves with the presence of uniform current was carried out by numerical wave tank technique using the commercial software, FLUENT. The continuity and Navier-Stokes equations were applied as the governing equations for incompressible fluid motion, and numerical wavemaker was employed to reproduce offshore wave environment. Convergence test against grids number was carried out to investigate grid dependency and optimized conditions for numerical wave generation were derived including investigation of the damping effect against length of the damping domain. Numerical simulation of wave and current interactions with fixed offshore substructure was carried out by computational fluid dynamics, and comparison with other experiments and simulations results was conducted.

디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션 (Numerical Simulation of a Near shore Tsunami Using a Digital Wave Tank Simulation Technique)

  • 박종천;전호환
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.7-15
    • /
    • 2003
  • A Digital Wave Tank simulation technique, based on a finite-difference method and a modified marker-and-cell (MAC) algorithm, is applied in order to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach, Ohkushiri Island, and to predict maximum wove run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain, and the boundary values are updated at each time step, by a finite-difference time-marching scheme in the frame of the rectangular coordinate system. The fully nonlinear, kinematic, free-surface condition is satisfied by the modified marker-density function technique. The near shore Tsunami is assumed to be a solitary wave, and is generated from the numerical wave-maker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods, based on the shallow-water wave theory.

디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션 (Numerical Simulation of Nearshore Tsunami Using a Digital Wave Tank Simulation Technique)

  • 박종천;전호환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.231-239
    • /
    • 2003
  • A Digital Wave Tank simulation technique based on a finite-difference method and a modified marker-and-cell (MAC) algorithm is applied to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach and Ohkushiri island, and to predict maximum wave run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain and the boundary values updated at each time step by a finite-difference time-marching scheme in the frame of rectangular coordinate system. The fully nonlinear kinematic free-surface condition is satisfied by the modified marker-density function technique. The Nearshore Tsunami is assumed to be a solitary wave and generated from the numerical wavemaker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods based on the shallow-water wave theory.

  • PDF

수치 민감도 해석을 통한 파랑중 FPSO운동 시뮬레이션 (Motion Simulation of FPSO in Waves through Numerical Sensitivity Analysis)

  • 김제인;박일룡;서성부;강용덕;홍사영;남보우
    • 한국해양공학회지
    • /
    • 제32권3호
    • /
    • pp.166-176
    • /
    • 2018
  • This paper presents a numerical sensitivity analysis for the simulation of the motion performance of an offshore structure in waves using computational fluid dynamics (CFD). Starting with 2D wave simulations with varying numerical parameters such as grid spacing and CFL value, proper numerical conditions were found for accurate wave propagation that avoids numerical diffusion problems. These results were mapped on 2D error distributions of wave amplitude and wave length against the numbers of grids per wave length and per wave height under a given CFL condition. Finally, the 2D numerical sensitivity result was validated through CFD simulation of the motion of a FPSO in waves showing good accuracy in motion RAOs compared with existing potential flow solutions.

수치파 수조에서의 극치파 생성과 수조실험을 통한 검증 연구 (Generation of Freak Waves in a Numerical Wave Tank and Its Validation in Wave Flume)

  • 정성재;박성욱
    • 대한조선학회논문집
    • /
    • 제46권5호
    • /
    • pp.488-497
    • /
    • 2009
  • The freak wave, also known as New-Year-Wave in the north Atlantic, is relatively large and spontaneous ocean surface wave that can sink even large ships and destroy maritime structures. To understand oceanic conditions that develop freak waves, we simulated and generated two versions of scale-downed waves (1:64 and 1:42) in a numerical wave tank and compared the results with the experiment in wave flume. Both of the breaking and non-breaking waves were generated in the simulation. The numerical simulation was implemented based on the finite volume method and a genetic optimization algorithm. Random values were assigned as the initial values for the parameter in the control function, which produced signals representing the motion of wave-maker. The same signal obtained from the optimization process was used for both of the simulation and the experiment. By varying the object function and restrictions of the simulation, a best profile of design wave was selected based on the characteristics, height and period of simulated waves. Results showed that the simulation and experiment with the scale of 1:42 agreed better with freak waves in the natural condition. The presented simulation method will contribute to saving the time and cost for conducting subsequent response analyses of motion under freak waves in the course of the model test for ship and maritime structure.

완도 해역의 해수면 조건에 따른 파랑 변형 특성 (Characteristics of Wave Propagation by Water Level Conditions at Wando Sea Area: Numerical Modeling)

  • 전용호;윤한삼;김동환;김원석;김헌태
    • 수산해양교육연구
    • /
    • 제25권1호
    • /
    • pp.1-11
    • /
    • 2013
  • The aim of this study was estimated the characteristics of the wave propagation by the water level conditions using a numerical modeling method at the Wando sea area. For three cases numerical simulation on the condition of incident and incoming of the deepwater design wave and the season normal wave, the spatial distribution of the incident wave at study area were investigated. And the calculated numerical modeling results were compared with measured field wave data. According to on-site wave data measured for 18 days, the range of the significant wave height and period were 0.10~1.14 m, 4.35~8.74 sec, respectively, and the maximum wave height were 0.15~1.66 m. From the results of numerical model for offshore design wave incident, the wave height attacked from Southern-East direction at this study area were over maximum 10.5 m because of rapidly change of water depth. Numerical modeling by three water level conditions of Approxmate Lowest Low Water Level(Approx. L.L.W), Mean Sea Level(M.S.L) and Approximate Highest High Water Level(Approx. H.H.W) were practiced. From the results for the case of Approx. H.W.L, variations of wave height at the back area of islands were about 1.6 m at maximum value for the case of deepwater design wave incoming. The significant wave heights of winter season were bigger than summer under normal wave condition, the incident wave height over 5.5 m decreased by shielding effect of islands. The change of maximum wave height at summer season were distinct than winter and was about 1.2 m and 0.8 m, respectively.

$\cdot$구조물$\cdot$지반의 비선형 동적응답해석을 위한 직접수치해석기법의 개발 (Direct Numerical Simulation on the Nonlinear Dynamic Responses among Wave, Structure and Seabed)

  • 허동수;김창훈;이광호;김도삼
    • 한국해안해양공학회지
    • /
    • 제17권2호
    • /
    • pp.86-97
    • /
    • 2005
  • 파랑하중하의 지반내 간극수압의 정확한 평가는 연안구조물에서 지반의 안정성을 검토하는데 중요한 요소이다. 파$\cdot$구조물 지반의 상호간섭에 대한 대부분의 기존 수치모델은 파동장과 지반부를 분리하여 해석하는 Hybrid기법을 적용하고 있기 때문에, 보다 고정도로 이들의 상호간섭을 모의하기 위해서는 파랑하중하에서 파$\cdot$구조물$\cdot$지반을 일체화한 수치모델의 개발이 필요하다. 본 연구에서는 투과층의 다양한 기하학적인 형태에 따라 층류저항까지 고려한 모델화 된 유체저항을 도입하여 파 구조물 지반의 비선형동적응답을 해석하기 위한 직접수치해석기법을 새롭게 제안하였다 직접수치해석기법은 Hybrid기법과는 달리 유체와 다공질매체의 접합면에서 특별한 경계조건을 필요로 하지 않는다. 파$\cdot$구조물$\cdot$지반의 상호간섭에 대해 기존의 수리실험결과와 본 연구의 계산결과를 비교함으로써 좋은 일치성을 확인할 수 있었다. 따라서 새롭게 제안된 본 수치기법은 파 구조물 지반의 비선형동적응답을 평가하는 유용한 기법으로 판단된다.