• Title/Summary/Keyword: Numerical technique

Search Result 3,702, Processing Time 0.036 seconds

An Improved Finite Element Modeling Technique for Prestressed Concrete Girder Bridges (PSC보 교량의 유한요소 모델링방법에 관한 연구)

  • 김광수;박선규;김형열
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.33-40
    • /
    • 1999
  • An improved finite element modeling technique is proposed for the assessment of load carrying capacity of partially prestressed concrete girder bridges. Based on the finite element method of analysis, shell and frame elements are used to model the slab and girders of the superstructure, respectively. In the modeling of superstructure, the emphasis is placed on the use of rigid link between the middle surface of slab an mid-plane of girder. This paper also includes the comparision of three different equations that are used in the calculation of effective moment of inertia for the partially prestressed concrete girders. Numerical analysis is performed for the unstrengthened and strengthened bridges. The obtained results are compared with those of load test for a prototype bridge. A good agreement is achieved between the numerical solutions by using the proposed method load test results.

Computation of viscoelastic flow using neural networks and stochastic simulation

  • Tran-Canh, D.;Tran-Cong, T.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.4
    • /
    • pp.161-174
    • /
    • 2002
  • A new technique for numerical calculation of viscoelastic flow based on the combination of Neural Net-works (NN) and Brownian Dynamics simulation or Stochastic Simulation Technique (SST) is presented in this paper. This method uses a "universal approximator" based on neural network methodology in combination with the kinetic theory of polymeric liquid in which the stress is computed from the molecular configuration rather than from closed form constitutive equations. Thus the new method obviates not only the need for a rheological constitutive equation to describe the fluid (as in the original Calculation Of Non-Newtonian Flows: Finite Elements St Stochastic Simulation Techniques (CONNFFESSIT) idea) but also any kind of finite element-type discretisation of the domain and its boundary for numerical solution of the governing PDE's. As an illustration of the method, the time development of the planar Couette flow is studied for two molecular kinetic models with finite extensibility, namely the Finitely Extensible Nonlinear Elastic (FENE) and FENE-Peterlin (FENE-P) models.P) models.

Numerical Simulation of Natural Convection in Annuli with Internal Fins

  • Ha, Man-Yeong;Kim, Joo-Goo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.718-730
    • /
    • 2004
  • The solution for the natural convection in internally finned horizontal annuli is obtained by using a numerical simulation of time-dependent and two-dimensional governing equations. The fins existing in annuli influence the flow pattern, temperature distribution and heat transfer rate. The variations of the On configuration suppress or accelerate the free convective effects compared to those of the smooth tubes. The effects of fin configuration, number of fins and ratio of annulus gap width to the inner cylinder radius on the fluid flow and heat transfer in annuli are demonstrated by the distribution of the velocity vector, isotherms and streamlines. The governing equations are solved efficiently by using a parallel implementation. The technique is adopted for reduction of the computation cost. The parallelization is performed with the domain decomposition technique and message passing between sub-domains on the basis of the MPI library. The results from parallel computation reveal in consistency with those of the sequential program. Moreover, the speed-up ratio shows linearity with the number of processor.

A New FFT Technique for the Analysis of Contact Pressure and Subsurface Stress in a Semi-Infinite Solid

  • Cho, Yong-Joo;Koo, Young-Pil;Kim, Tae-Wan
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.331-337
    • /
    • 2000
  • A numerical procedure for contact analysis and calculating subsurface stress was developed. The procedure takes the advantage of signal processing technique in frequency domain to achieve shorter computing time. Boussinesq's equation was adopted as a response function in contact analysis. The validity of this procedure was proved by comparing the numerical results with the exact solutions. The fastness of this procedure was also compared with other algorithm.

  • PDF

Buckling of fully and partially embedded non-prismatic columns using differential quadrature and differential transformation methods

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.221-238
    • /
    • 2008
  • Numerical solution to buckling analysis of beams and columns are obtained by the method of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for various support conditions considering the variation of flexural rigidity. The solution technique is applied to find the buckling load of fully or partially embedded columns such as piles. A simple semi- inverse method of DQ or HDQ is proposed for determining the flexural rigidities at various sections of non-prismatic column ( pile) partially and fully embedded given the buckling load, buckled shape and sub-grade reaction of the soil. The obtained results are compared with the existing solutions available from other numerical methods and analytical results. In addition, this paper also uses a recently developed technique, known as the differential transformation (DT) to determine the critical buckling load of fully or partially supported heavy prismatic piles as well as fully supported non-prismatic piles. In solving the problem, governing differential equation is converted to algebraic equations using differential transformation methods (DT) which must be solved together with applied boundary conditions. The symbolic programming package, Mathematica is ideally suitable to solve such recursive equations by considering fairly large number of terms.

Model Test and Deformation Analysis of the Improved Soft Foundation( Il) (개량연약지반의 모형실험과 변형해석 (II))

  • 이진수;이문수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.4
    • /
    • pp.73-86
    • /
    • 1994
  • Ths paper was aimed to investigate the effect of reinforcement for the deformation characteristics of clayey foundation. Among numerous improvement method of foundation, only geotextil-reinforced foundation and foundation with both geotextile and sand mat which were 2-dimensional model clayey foundations were selected for load test in order to obtain fundamental results in analizing the behavior of the foundation with geotextile. To scrutinize the behavior characteristics and effect of reinforcement, the model foundations were constructed with various conditions on the location of layout of geotextile, the number of layouts and the depth of sand mat As for the technique of the numerical analysis elasto-plastic constitutive model for clayey soil, beam element for geotextile and elastic model for sand were respectively employed. Interface element was introduced for the block between materials with different rigidity. Observed values and numerical results were compared with satisfactory correspondence, which proved that the numercial technique developed in this paper was available.

  • PDF

Evaluation Technique of Seismic Performance on Agricultural Infrastructure - Based on Dynamic Numerical Analysis - (농업 기반시설의 내진성능 평가기법 - 동적 수치해석 중심으로-)

  • Lee, Dal-Won;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.75-84
    • /
    • 2004
  • The evaluation technique of seismic performance on agricultural infrastructure based on dynamic numerical simulations, which Included a cyclic elasto-plastic and a viscoelastic-viscoplastic constitutive model to actual multi-layered ground conditions during large earthquake were performed by a liquefaction analysis in the present study. From the liquefaction analysis, it was verified that the models can give a good description of the damping characteristics and liquefaction phenomena of ground accurately during large event which induces plastic deformation in large strain range.

Experimental and numerical analysis of corrosion-induced cover cracking in reinforced concrete sample

  • Richard, Benjamin;Quiertant, Marc;Bouteiller, Veronique;Delaplace, Arnaud;Adelaide, Lucas;Ragueneau, Frederic;Cremona, Christian
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.421-439
    • /
    • 2016
  • Corrosion of embedded reinforcing bars is recognized as being the major cause of deterioration of reinforced concrete structures. With regard to maintenance strategies of concrete nuclear structures, the monitoring of cracking remains of primary importance. Recently, authors have developed a post-treatment technique to extract crack features from continuous computations. In this paper, such technique is applied to carry out a numerical analysis of an accelerated corrosion test. Obtained results allow highlighting specific propagation and failure mechanisms that characterize corrosion-induced cracking.

A decoupling FEM for simulating near-field wave motion in two-phase media

  • Chen, S.L.;Liao, Z.P.;Chen, J.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.2
    • /
    • pp.181-200
    • /
    • 2007
  • A decoupling technique for simulating near-field wave motions in two-phase media is introduced in this paper. First, an equivalent but direct weighted residual method is presented in this paper to solve boundary value problems more explicitly. We applied the Green's theorem for integration by parts on the equivalent integral statement of the field governing equations and then introduced the Neumann conditions directly. Using this method and considering the precision requirement in wave motion simulation, a lumped-mass FEM for two-phase media with clear physical concepts and convenient implementation is derived. Then, considering the innate attenuation character of the wave in two-phase media, an attenuation parameter is introduced into Liao's Multi-Transmitting Formula (MTF) to simulate the attenuating outgoing wave in two-phase media. At last, two numerical experiments are presented and the numerical results are compared with the analytical ones demonstrating that the lumped-mass FEM and the generalized MTF introduced in this paper have good precision.

Simulation of Atmospheric Pollutants Concentration in the Urban Scale (도시 규모의 대기오염 농도 예측)

  • 이상득;정일현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.2
    • /
    • pp.137-145
    • /
    • 1997
  • To predict the effects of air pollutant in the coastal region, we have developed the air pollutant model, the reaction model and the deposition of NO, $NO_2, and O_3$. And the numerical model of air pollutant concentration employed the nested technique to calculate with the higher resolution for the area. The nested technique used two grid systems, one for the large scale calculating region with the coarse mesh grid (CMG) and the other for the small scale region with the fine grid (FMG). In other to prove the validity of the simulation model the calculations were conducted for the present situation. The results of them reasonably agree with the observed data and proved the validity of the model.

  • PDF