• 제목/요약/키워드: Numerical tank

검색결과 676건 처리시간 0.021초

A time-domain simulation of an oscillating water column with irregular waves

  • Koo, Weoncheol;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • 제2권2호
    • /
    • pp.147-158
    • /
    • 2012
  • A time-domain simulation of a land-based Oscillating Water Column (OWC) with various irregular waves as a form of PM spectrum is performed by using a two-dimensional fully nonlinear numerical wave tank (NWT) based on the potential theory, mixed Eulerian-Lagrangian (MEL) approach, and boundary element method. The nonlinear free-surface condition inside the OWC chamber was specially devised to describe both the pneumatic effect of the time-varying pressure and the viscous energy loss due to water column motions. The quadratic models for pneumatic pressure and viscous loss are applied to the air and free surface inside the chamber, and their numerical results are compared with those with equivalent linear ones. Various wave spectra are applied to the OWC system to predict the efficiency of wave-energy take-off for various wave conditions. The cases of regular and irregular waves are also compared.

밀도가 상이한 두 유체층에서 부유체 동유체력 특성의 수치적 해석 (Numerical Analysis of Hydrodynamic Forces on a Floating Body in Two-layer Fluids)

  • 김미근;구원철
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.369-376
    • /
    • 2010
  • In this study, a radiation and a diffraction problems of a floating body in two-layer fluids were solved by the Numerical Wave Tank(NWT) technique in the frequency domain. In two-layer fluids, two different wave modes exist and the hydrodynamic coefficients can be obtained separately for each mode. The two-domain Boundary Element Method(BEM) in the potential fluid using the whole-domain matrix scheme was used to investigate the characteristics of wave forces, added mass and damping coefficients. The effects of the ratio of density and water depth in the lower domain were also evaluated and compared with given references.

2D Computational Analysis of Overtopping Wave Energy Convertor

  • ;현범수
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.1-6
    • /
    • 2009
  • An Overtopping Wave Energy Convertor (OWEC) is an offshore wave energy convertor used for collecting overtopping waves and converting the water pressure head into electric power through hydro turbines installed in a vertical duct affixed to the sea bed. A numerical wave tank based on the commercial computational fluid dynamics code Fluent is established for the corresponding analysis. The Reynolds Averaged Navier-Stokes equation and two-phase VOF model are utilized to generate the 2D numerical linear propagating waves, which are validated by the overtopping experiment results. Calculations are made for several incident wave conditions and shape parameters for the overtopping device. Both the incident wave periods and heights have evident effects on the overtopping performance of the OWEC device. The computational analysis demonstrates that the present overtopping device is more compatible with longer incident wave periods.

Numerical and Experimental Investigations of the Effects of Stem Angle on the Resistance of an Icebreaking Cargo Vessel in Pack Ice Conditions

  • Shin, Yong Jin;Kim, Moon Chan;Kim, Beom Jun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권2호
    • /
    • pp.67-80
    • /
    • 2016
  • The resistance performance of an icebreaking cargo vessel with varied stem angles is investigated numerically and experimentally. Ship-ice interaction loads are numerically calculated based on the fluid structure interaction (FSI) method using the commercial FE package LS-DYNA. Test results obtained from model testing with synthetic ice at the Pusan National University towing tank and with refrigerated ice at the National Research Council's (NRC) ice tank are used to validate and benchmark the numerical simulations. The designed icebreaking cargo vessel with three stem angles ($20^{\circ}$, $25^{\circ}$, and $30^{\circ}$) is used as the target ship for three concentrations (90%, 80%, and 60%) of pack ice conditions. The comparisons between numerical and experimental results are shown and our main conclusions are given.

Fluidic Valve의 유동 특성에 관한 연구 (A Study on the Flow Characteristics of Fluidic Valve)

  • 유성연;지명석;김기형;김만웅
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.425-432
    • /
    • 2001
  • Fluidic valve is adopted in APR1400 to control passively the flow rate of cooling water from the safety injection tank. It is necessary to establish independent evaluation guideline for the flow characteristics of fluidic valve in order to secure safety. Three dimensional numerical model for fluidic valve is developed and numerical results are compared with experimental data obtained at KAERI in order to verify numerical simulation. Also influence of the grid number and the turbulence model were investigated. In addition, variation of flow rate is investigated at various elapsed times after valve operating, and flow characteristics are analyzed at low and high flow rate conditions, respectively.

  • PDF

LNG 저장탱크용 멤브레인 성형공정에 관한 해석적·실험적 연구 (Numerical Analysis and Experimental Evaluation on Formability of Membrane for LNG Storage Tank)

  • 노학곤;정주영;구태완;강범수
    • 소성∙가공
    • /
    • 제20권6호
    • /
    • pp.409-419
    • /
    • 2011
  • Membrane structures are widely used for LNG(Liquefied Natural Gas) storage tanks. This study presents a membrane structure based on the Mark-III type. For its development, a series of numerical simulation was conducted using ABAQUS and experimental investigation was carried out. The manufacturing process of the membrane was simulated. The thickness distribution predicted by the numerical approach agreed well with the experimental results.

Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth

  • Koo, Weoncheol;Kim, Jun-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.115-127
    • /
    • 2015
  • The aim of this study is to develop a simplified formula for added mass coefficients of a two-dimensional floating body moving vertically in a finite water depth. Floating bodies with various sectional areas may represent simplified structure sections transformed by Lewis form, and can be used for floating body motion analysis using strip theory or another relevant method. Since the added mass of a floating body varies with wave frequency and water depth, a correction factor is developed to take these effects into account. Using a developed two-dimensional numerical wave tank technique, the reference added masses are calculated for various water depths at high frequency, and used them as basis values to formulate the correction factors. To verify the effectiveness of the developed formulas, the predicted heave added mass coefficients for various wetted body sections and wave frequencies are compared with numerical results from the Numerical Wave Tank (NWT) technique.

Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics

  • Zou, Chang-Fang;Wang, De-Yu;Cai, Zhong-Hua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.670-690
    • /
    • 2015
  • In this paper, numerical investigations for tank sloshing, based on commercial CFD package FLUENT, are performed to study effects of boundary layer grid, liquid viscosity and compressible air on sloshing pressure, wave height and rising time of impact pressure. Also, sloshing experiments for liquids of different viscosity are carried out to validate the numerical results. Through comparison of numerical and experimental results, a computational model including boundary layer grid can predict the sloshing pressure more accurately. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and wave elevation. Sloshing pressure is also reduced because of cushion effect of compressible air. Due to high viscosity damping effect and compressible air effect, the rising time of impact pressure becomes longer. It is also found that liquid viscosity and compressible air influence distribution of dynamic pressure along the vertical tank wall.

고차 스펙트럴/경계요소법을 이용한 3차원 수치 파수조의 개발-균일속도로 전진하는 표면압력에 의한 조파현상- (Development of Three-Dimensional Numerical Wave Tank by Using the High-Order Spectral/Boundary-Element Method -Waves Generated by a Uniformly Translating Surface Pressure)

  • 김용직;이영우;홍지훈
    • 한국해양공학회지
    • /
    • 제13권1호통권31호
    • /
    • pp.113-120
    • /
    • 1999
  • In this paper, mathematical formulation of the high-order spectral/boundary-element method is shown. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated in time-domain. Three-dimensional waves generated by a uniformly translating suriace pressure are calculated and discussed. The obtained results are compared with others results, The comparisons show good agreements.

  • PDF

Two-domain 경계 요소법을 이용한 해양 내부파의 수치적 재현 (Numerical Analysis of Internal Waves in Two-layer Fluids by a Two-domain Boundary Element Method)

  • 구원철;김미근
    • 한국해양공학회지
    • /
    • 제23권4호
    • /
    • pp.6-11
    • /
    • 2009
  • In this study, the internal waves in two-density layered fluids were analyzed using the Numerical Wave Tank (NWT) technique in the frequency domain. The NWT is based on a two-domain Boundary Element Method with the potential fluids using the whole-domain matrix scheme. From the mathematical solution of the two-domain boundary integral equation, two different wave modes could be classified: a surface wave mode and an internal wave mode, and each mode were shown to have a wave number determined by a respective dispersion relation. The magnitudes of the internal waves against surface waves were investigated for various fluid densities and water depths. The calculated results are compared with available theoretical data.