• Title/Summary/Keyword: Numerical tank

Search Result 673, Processing Time 0.026 seconds

Evaluation of Solar Collector to Introduce Natural Convection in Water Tank to Obtain Warm Water (온수 취득용 물탱크에 자연대류 방식 도입을 위한 단일진공관 태양열집열기의 성능평가 연구)

  • Do, Seung-Ju;Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.22-29
    • /
    • 2018
  • The purpose of this study was to evaluate the performance of a solar collector to introduce natural convection in a water tank as a means of obtaining warm water. Numerical analysis was performed to predict the characteristics of the solar collector and its performance was verified using an experimental method. The single vacuum structure of the collector enabled natural convection when it was fitted on the water tank. Based on numerical analysis, warm water of $31-54^{\circ}C$ was obtained when the inlet temperature of cold water was $20^{\circ}C$. Furthermore, the temperature of the warm water could be predicted under various conditions as well as the experimental conditions created for this study.

Optimal Design of Mud Flushing System in Ballast tank of LNG Carrier (LNG선 Ballast Tank Mud Flushing System의 최적설계)

  • Park, Sang Hyeop;Song, Yoo Seok;Kim, Young Bok
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.2
    • /
    • pp.85-92
    • /
    • 2016
  • During ballast of a LNG carrier, the mud at the sea floor can enter the tanks together with the ballast water if the LNG terminal is located at shallow water region. In order to remove the mud deposited on the tank floor during deballasting, the mud flushing system in the ballast tanks is applied. In this study, various analyses to conform the efficiency in the mud removal are performed. In order to design the mud flushing system, the particle size of the mud is measured by particle size analyzer. Flushing performance is evaluated by numerical analysis. From the results of numerical analysis including flow field and piping system network, the optimized flushing system is determined.

Study on the Wall Effect Correction for Propeller Open Water Characteristics in the Medium Size Cavitation Tunnel (중형 공동수조에서의 프로펠러 단독특성에 대한 위벽효과 보정 연구)

  • Suh, Sung-Bu;Kim, Ki-Sup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.718-724
    • /
    • 2010
  • This paper studies the differences due to the wall effect in propeller open water(POW) characteristics tested in a towing tank and in a medium size cavitation tunnel(CT). When the advanced velocity of the propeller is defined as the flow velocity measured in the plane of propeller, POW characteristics resulting from CT has a better relationship with them of towing tank. To obtain the wall effect in the propeller plane, numerical computation using the lifting panel theory is performed with and without the wall around a propeller. Then, POW results in CT are corrected based on the wall effect from numerical results. The POW results obtained from this procedure show a better agreement with the experimental results in the towing tank.

Numerical Analysis of the Melting Process of Ice Using Plate Heaters with Constant Heat Flux (일정 열유속 조건의 판형 히터에 의한 해빙과정의 수치해석)

  • Kim, Hark-Koo;Jeong, Si-Young;Hur, Nahm-Keon;Lim, Tae-Won;Park, Yong-Sun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.434-440
    • /
    • 2007
  • One of the cold start problems of a FCV is the freezing of the water in the water tank when a FCV is not in operation and the surrounding temperature drops below $0^{\circ}C$. The ice in the tank should be melted as quickly as possible for a satisfactory operation of fuel cell vehicles. In this study, the melting process for the constant heat fluxes of the plate heaters was numerically calculated in the 2-D model of the tank and plate heaters. The enthalpy method and FVM code was used for this analysis. The changes of the temperature with heat fluxes and the heat transfer area could be investigated. The energy balance error was found to increase with the heat flux. From this numerical analysis, the proper heat flux value and some important design factors relating local overheating and pressurization of the water tank could be examined.

Simulation of Open-Loop Borehole Heat Exchanger System using Sand Tank Experiment and Numerical Model (토조 및 수치모형을 이용한 개방형 지중 열교환 시스템 모의)

  • Lee, Seong-Sun;Bae, Gwang-Ok;Lee, Kang-Kun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.489-492
    • /
    • 2007
  • Understanding the thermohydraulic processes in the aquifer is necessary for a proper design of the aquifer thermal energy utilization system under given conditions. Experimental and numerical test were accomplished to evaluate the relationship between the geothermal heat exchanger operation and hydrogeological conditions in the open-loop geothermal system. Sand tank experiments were designed to investigate the open-loop geothermal system. Water injection and extract ion system as open-loop borehole heat exchanger was applied to observe the temperature changes in time at injection well, extraction well and ambient groundwater. The thermohydraulic transfer for heat storage was simulated using FEFLOW for two cases of extraction and injection phase operation in sand tank model. As one case, the movement of the thermal plume was simulated with variable locations of injection and extraction well. As another case, the simulation was performed with fixed location of injection and extraction well. The simulation and experimental results showed that the temperature distribution depends highly on the injected water temperature and the length of injection time and the groundwater flow and pumping rate sensitively affect the heat transfer.

  • PDF

Numerical Study on Flow Patterns in a Stirred Tank with Impeller Types (혼합탱크 내의 임펠라 형태에 따른 유동 특성에 관한 수치해석)

  • Song, Gil-Sub;Oh, Sueg-Young;Oh, Jeong-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.2 s.15
    • /
    • pp.29-35
    • /
    • 2002
  • The present study is concerned with the flow patterns induced by various impellers in a rectangular tank. Impellers are FBT (Flat blade turbine), PBT (Pitched blade turbine), Shroud turbine, Rushton turbine, and Helical ribbon turbine types. The solutions of flows in moving reference frames require the use of 'moving' cell zone. The moving zone approaches are based on MRF (Multiple reference frame), which is a steady-state approximation and sliding method, which is an unsteady-state approximation. Numerical results using two moving zone approaches we compared with experiments by Ranade & Joshi, which have done extensive LDA measurements of the flow generated by a standard six-bladed Rushton turbine in a cylindrical baffled vessel. In this paper, we simulated the flow patterns with above-mentioned moving zone approaches and impellers. Turbulence model used is RNG $k-{\epsilon}$ model. Sliding-mesh method is more effective than MRF for simulating the rectangular tank with inlet and outlet. RNG $k-{\epsilon}$ model strongly underestimates the velocity of experimental data and velocity by Chen & Kim's model, but it seems to be correctly predicted in overall distribution.

Numerical analysis of melting process in a water tank for fuel-cell vehicles (연료전지 자동차의 물탱크 해빙과정에 대한 수치해석적 연구)

  • Kim, Hark-Koo;Jeong, Si-Young;Hur, Nahm-Keon;Lim, Tae-Won;Park, Yong-Sun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.74-79
    • /
    • 2006
  • Good cold start characteristics are essential for satisfactory operation of fuel cell vehicles. In this study, the melting process has been numerically investigated for a water tank frozen in cold weather The 2-D model of the tank containing ice and plate heaters was assumed and the unsteady melting process of the ice was calculated. The enthalpy method was used for the description of the melting process, and a FVM code was used to solve the problem. The feasibility study compared with other experiment showed that the developed program was able to describe the melting process well. From the numerical analysis carried out for different wall temperatures of the pate heaters, some important design factors could be found such as local overheating and pressurization in the tank.

  • PDF

Safety Analysis of Hazmat Tank Foundation to Prevent Tank Fire (위험물탱크 화재방지를 위한 기초 안정성 분석연구)

  • Choi, Jeong-Soo;Lim, Jong-Jin;Choi, Young-Seok
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.165-172
    • /
    • 2008
  • Leakage incidents due to the fault of hazmat tank foundations are likely to cause the tremendous fire disaster in the national industry cluster area. The proper design and construction of tank foundation should be required to prevent the tank fire. In the study, the types of typical tank foundations were classified and modeling the individual tank type for 3D FEM analysis was performed to suggest the guideline for the design and construction of tank foundations. Matters to be attended of the foundation design and construction are reviewed through the comparison assessment of the numerical analysis results of the foundation types.

  • PDF

Development and Application of Two-Dimensional Numerical Tank using Desingularized Indirect Boundary Integral Equation Method (비특이화 간접경계적분방정식방법을 이용한 2차원 수치수조 개발 및 적용)

  • Oh, Seunghoon;Cho, Seok-kyu;Jung, Dongho;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.447-457
    • /
    • 2018
  • In this study, a two-dimensional fully nonlinear transient wave numerical tank was developed using a desingularized indirect boundary integral equation method. The desingularized indirect boundary integral equation method is simpler and faster than the conventional boundary element method because special treatment is not required to compute the boundary integral. Numerical simulations were carried out in the time domain using the fourth order Runge-Kutta method. A mixed Eulerian-Lagrangian approach was adapted to reconstruct the free surface at each time step. A numerical damping zone was used to minimize the reflective wave in the downstream region. The interpolating method of a Gaussian radial basis function-type artificial neural network was used to calculate the gradient of the free surface elevation without element connectivity. The desingularized indirect boundary integral equation using an isolated point source and radial basis function has no need for information about the element connectivity and is a meshless method that is numerically more flexible. In order to validate the accuracy of the numerical wave tank based on the desingularized indirect boundary integral equation method and meshless technique, several numerical simulations were carried out. First, a comparison with numerical results according to the type of desingularized source was carried out and confirmed that continuous line sources can be replaced by simply isolated sources. In addition, a propagation simulation of a $2^{nd}$-order Stokes wave was carried out and compared with an analytical solution. Finally, simulations of propagating waves in shallow water and propagating waves over a submerged bar were also carried and compared with published data.

Temperature and Velocity Characteristics in a Land Aquaculture Tank with a Various Inlet Flowrates (육상 수조식 양식장의 유입 유량 변화에 따른 온도와 속도의 특성)

  • Kim, Se-Hyun;Shin, You-Sik;Jun, You-Sin;Seo, Jong-Soo;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2083-2088
    • /
    • 2003
  • This study was performed to analyze the velocity and temperature distributions of the land aquaculture tank for fish breeding. In this study, we analyzed the velocity and temperature distributions in aquarium tank, and the finite volume method and standard ${\kappa}-{\epsilon}$ turbulence model with the SIMPLE computational algorithm are used to study the water flow in the aquarium. The main calculation parameters of the aquarium tank are the inlet flow rate with from 0.5 to 2.0L/M.

  • PDF