• Title/Summary/Keyword: Numerical schemes

Search Result 758, Processing Time 0.027 seconds

Numerical Characteristics of Upwind Schemes for Preconditioned Navier-Stokes Equations (예조건화된 Navier-Stokes 방정식에서의 풍상차분법의 수치특성)

  • Gill, Jae-Heung;Lee, Du-Hwan;Sohn, Duk-Young;Choi, Yun-Ho;Kwon, Jang-Hyuk;Lee, Seung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1122-1133
    • /
    • 2003
  • Numerical characteristics of implicit upwind schemes, such as upwind ADI, line Gauss-Seidel (LGS) and point Gauss-Seidel (LU) algorithms, for Navier-Stokes equations have been investigated. Time-derivative preconditioning method was applied for efficient convergence at low Mach/Reynolds number regime as well as at large grid aspect ratios. All the algorithms were expressed in approximate factorization form and von Neumann stability analysis was performed to identify stability characteristics of the above algorithms in the presence of high grid aspect ratios. Stability analysis showed that for high aspect ratio computations, the ADI and LGS algorithms showed efficient damping effect up to moderate aspect ratio if we adopt viscous preconditioning based on min-CFL/max-VNN time-step definition. The LU algorithm, on the other hand, showed serious deterioration in stability characteristics as the grid aspect ratio increases. Computations for several practical applications also verified these results.

Study on Steady Flow Effects in Numerical Computation of Added Resistance of Ship in Waves

  • Lee, Jae-Hoon;Kim, Beom-Soo;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.193-203
    • /
    • 2017
  • This study investigated the steady-flow effects present in the numerical computation of the resistance added to a ship in waves. For a ship advancing in the forward direction, a time-domain 3D Rankine panel method is applied to solve the ship motion problem, and the added resistance due to waves is calculated using a near-field method, with the direct integration of the second-order pressure on the hull surface. In the linear potential theory, the steady flow is approximated by the basis potential of a uniform flow or double-body flow in order to linearize the boundary conditions. By applying these two different linearization schemes, the coupling effects between steady and unsteady solutions were examined. Furthermore, in order to analyze the steady-flow effects on the hull geometry, the computation results for two realistic hull forms, a KVLCC2 tanker and DTC containership, were compared. In particular, the mj term, which represents the coupling effects under the body boundary condition, was evaluated considering the geometry of a non-wall-sided ship. Lastly, the characteristics of the linearization schemes were examined in relation to the disturbed waves around a ship and the components of added resistance.

A Numerical Study on the Aerodynamic Characteristics of a Bus-Like Bluff Body - Effect of Turbulence Model and Discretisation Scheme - (버스형상 무딘물체의 공력특성에 관한 수치해석적 고찰 - 난류모델과 이산화법의 영향 -)

  • 김민호;국종영;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.115-123
    • /
    • 2003
  • With the advent of high performance computers and more efficient numerical algorithms, computational fluid dynamics(CFD) has come out as a modem alternative for reducing the use of wind tunnels test in automotive engineering. However, in spite of the fact that many competent researchers have made all their talents in developing turbulence model over since the past dozen or more years, it has been an important impediment in using the CFD effectively to design machinery and to diagnose or to improve engineering problems in the industry since the turbulence model has been acting as the Achilles' tendon in aspect of the reliability even to this time. In this study, Reynolds-averaged Wavier-Stokes equations were solved to simulate an incompressible turbulent flow around a bus-like bluff body near ground plane. In order to investigate the effect of the discretisation schemes and turbulence model on the aerodynamic forces several turbulence models with five convective difference schemes are adopted. From the results of this study, it is clear that choice of turbulence model and discretisation scheme profoundly affects the computational outcome. The results also show that the adoption of RNG $k-\varepsilon$ turbulence model and nonlinear quadratic turbulence model with the second order accurate discretisation scheme predicts fairly well the aerodynamic coefficients.

A Study on the Treatment of Open Boundary in the Two-Dimensional Free-Surface Wave Problems (2차원 자유표면파 문제에서의 방사조건 처리에 관한 고찰)

  • Y.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.80-89
    • /
    • 1992
  • This paper deals with the open boundary problems, and two numerical schemes are used for the implementation of open boundary condition. One is to add the artificial damping term to dynamic free-surface boundary condition. Determination of suitable damping coefficient and the damping cone is the most important in this scheme. The other scheme is a modified Orlanski's method. This will be useful for the problems with unidirectional waves. A few typical free-surface wave problems are modeled for the numerical test. Method of solution is fundamental source-distribution method and the fully nonlinear boundary conditions are applied. The computed results are compared with those of others for the proof of practicality of these schemes.

  • PDF

ExLO: Development of a Three-Dimensional Hydrocode (ExLO:3차원 유체동역학 프로그램의 개발)

  • Chung, W.J.;Lee, M.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.235-237
    • /
    • 2008
  • A unified hydrocode, ExLO, in which Largrangian, ALE and Eulerian solvers are incorporated into a single framework, has recently been developed in Korea. It is based on the three dimensional explicit finite element method and written in C++. ExLO is mainly designed for the calculation of structural responses to highly transient loading conditions, such as high-speed impacts, high-speed machining, high speed forming and explosions. In this paper the numerical schemes are described. Some improvements of the material interface and advection scheme are included. Details and issues of the momentum advection scheme are provided. In this paper the modeling capability of ExLO has been described for two extreme loading events; high-speed impacts and explosions. Numerical predictions are in good agreement with the existing experimental data. Specific applications of the code are discussed in a separate paper in this journal. Eventually ExLO will be providing an optimum simulation environment to engineering problems including the fluid-structure interaction problems, since it allows regions of a problem to be modeled with Lagrangian, ALE or Eulerian schemes in a single framework.

  • PDF

Representation of Model Uncertainty in the Short-Range Ensemble Prediction for Typhoon Rusa (2002) (단기 앙상블 예보에서 모형의 불확실성 표현: 태풍 루사)

  • Kim, Sena;Lim, Gyu-Ho
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • The most objective way to overcome the limitation of numerical weather prediction model is to represent the uncertainty of prediction by introducing probabilistic forecast. The uncertainty of the numerical weather prediction system developed due to the parameterization of unresolved scale motions and the energy losses from the sub-scale physical processes. In this study, we focused on the growth of model errors. We performed ensemble forecast to represent model uncertainty. By employing the multi-physics scheme (PHYS) and the stochastic kinetic energy backscatter scheme (SKEBS) in simulating typhoon Rusa (2002), we assessed the performance level of the two schemes. The both schemes produced better results than the control run did in the ensemble mean forecast of the track. The results using PHYS improved by 28% and those based on SKEBS did by 7%. Both of the ensemble mean errors of the both schemes increased rapidly at the forecast time 84 hrs. The both ensemble spreads increased gradually during integration. The results based on SKEBS represented model errors very well during the forecast time of 96 hrs. After the period, it produced an under-dispersive pattern. The simulation based on PHYS overestimated the ensemble mean error during integration and represented the real situation well at the forecast time of 120 hrs. The displacement speed of the typhoon based on PHYS was closest to the best track, especially after landfall. In the sensitivity tests of the model uncertainty of SKEBS, ensemble mean forecast was sensitive to the physics parameterization. By adjusting the forcing parameter of SKEBS, the default experiment improved in the ensemble spread, ensemble mean errors, and moving speed.

Averaged BER Performance Analysis of CDD-DSF-Relay schemes for MC-CDMA Systems over Multipath Rayleigh Fading Channles (CDD-DSF 릴레이 기법을 적용한 MC-CDMA 시스템의 다중경로 레일리 페이딩 채널에 대한 평균 비트 오류율 분석)

  • Ko, Kyun-Byoung;Seo, Jeong-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.3-10
    • /
    • 2012
  • In this paper, CDD(Cyclic Delay Diversity)-DSF(decode-and-selectively forward) relay schemes are proposed for MC-CDMA(multicarrier-code division multiple access) systems over multipath Rayleigh fading channels. On the contrary to general DSF schemes, each relay equipped a CDD method can transmit on single channel. Therefore, all link channels between destination and relays can be considered as a single channel which is widely delay spread. The cooperative diversity of relay networks can be obtained as the frequency diversity for MC-CDMA systems with proposed CDD schemes. Furthermore, a semi-analytical approach for the averaged bit error rare(BER) performance evaluation is proposed for the proposed CDD-DSF-Relay schemes. By simulation and numerical results, it is confirmed that the proposed one can be a possible solution to achieve cooperative diversity gain without a reduction of spectral efficiency.

Resource Allocation Schemes for Legacy OFDMA Systems with Two-Way DF Relay (양방향 복호전달 릴레이를 사용하는 레거시 OFDMA 시스템에서의 자원 할당 기법)

  • Seo, Jongpil;Han, Chulhee;Park, Seongho;Chung, Jaehak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.593-600
    • /
    • 2014
  • OFDMA systems solves frequency selective fading problem and provides improved performance by optimal allocation of subcarriers and transmit power. Two-way relay systems provide improved spectral efficiency compared to that of the conventional half-duplex relay using bidirectional communications. In legacy OFDMA system such as WiBro, two-way DF relay utilization causes pilot re-assignment and impossibility of channel estimation and decoding at relay nodes by self-interference. In this paper, resource allocation schemes for legacy OFDMA systems with two-way DF relay are proposed. The proposed schemes allocate subcarriers considering destinations nodes which are connected to relay nodes as individual nodes which are directly connected to a base station. Subsequently, the proposed schemes compensate bandwidth loss due to orthogonal allocations by overlapped allocating unused subcarriers at other noes. Numerical simulations show that the proposed resource allocation schemes provide improved performance compared with orthogonal allocation.

Uniform Fractional Band CAC Scheme for QoS Provisioning in Wireless Networks

  • Rahman, Md. Asadur;Chowdhury, Mostafa Zaman;Jang, Yeong Min
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.583-600
    • /
    • 2015
  • Generally, the wireless network provides priority to handover calls instead of new calls to maintain its quality of service (QoS). Because of this QoS provisioning, a call admission control (CAC) scheme is essential for the suitable management of limited radio resources of wireless networks to uphold different factors, such as new call blocking probability, handover call dropping probability, channel utilization, etc. Designing an optimal CAC scheme is still a challenging task due to having a number of considerable factors, such as new call blocking probability, handover call dropping probability, channel utilization, traffic rate, etc. Among existing CAC schemes such as, fixed guard band (FGB), fractional guard channel (FGC), limited fractional channel (LFC), and Uniform Fractional Channel (UFC), the LFC scheme is optimal considering the new call blocking and handover call dropping probability. However, this scheme does not consider channel utilization. In this paper, a CAC scheme, which is termed by a uniform fractional band (UFB) to overcome the limitations of existing schemes, is proposed. This scheme is oriented by priority and non-priority guard channels with a set of fractional channels instead of fractionizing the total channels like FGC and UFC schemes. These fractional channels in the UFB scheme accept new calls with a predefined uniform acceptance factor and assist the network in utilizing more channels. The mathematical models, operational benefits, and the limitations of existing CAC schemes are also discussed. Subsequently, we prepared a comparative study between the existing and proposed scheme in terms of the aforementioned QoS related factors. The numerical results we have obtained so far show that the proposed UFB scheme is an optimal CAC scheme in terms of QoS and resource utilization as compared to the existing schemes.

Structural efficiency of various strengthening schemes for cold-formed steel beams: Effect of global imperfections

  • Dar, M. Adil;Subramanian, N.;Dar, A.R.;Majid, Muheeb;Haseeb, Mohd;Tahoor, Mugees
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.393-403
    • /
    • 2019
  • Cold-formed steel (CFS) has a great potential to meet the global challenge of fast-track and durable construction. CFS members undergo large buckling instabilities due to their small wall thickness. CFS beams with corrugated webs have shown great resistance towards web buckling under flexure, when compared to the conventional I-sections. However, the magnitude of global imperfections significantly affects the performance of CFS members. This paper presents the first attempt made to experimentally study the effect of global imperfections on the structural efficiency of various strengthening schemes implemented in CFS beams with corrugated webs. Different strengthening schemes were adopted for two types of beams, one with large global imperfections and the other with small imperfections. Strength and stiffness characteristics of the beams were used to evaluate the structural efficiency of the various strengthening schemes adopted. Six tests were performed with simply supported end conditions, under four-point loading conditions. The load vs. mid-span displacement response, failure loads and modes of failure of the test specimens were investigated. The test results would compensate the lack of experimental data in this area of research and would help in developing numerical models for extensive studies for the development of necessary guidelines on the same. Strengthening schemes assisted in enhancing the member performance significantly, both in terms of strength and stiffness. Hence, providing an economic and time saving solution to such practical structural engineering problems.