• Title/Summary/Keyword: Numerical optimization technique

Search Result 385, Processing Time 0.02 seconds

Development of a n-path algorithm for providing travel information in general road network (일반가로망에서 교통정보제공을 위한 n-path 알고리듬의 개발)

  • Lim, Yong-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.135-146
    • /
    • 2004
  • For improving the effectiveness of travel information, some rational paths are needed to provide them to users driving in real road network. To meet it, k-shortest path algorithms have been used in general. Although the k-shortest path algorithm can provide several alternative paths, it has inherent limit of heavy overlapping among derived paths, which nay lead to incorrect travel information to the users. In case of considering the network consisting of several turn prohibitions popularly adopted in real world network, it makes difficult for the traditional network optimization technique to deal with. Banned and penalized turns are not described appropriately for in the standard node/link method of network definition with intersections represented by nodes only. Such problem could be solved by expansion technique adding extra links and nodes to the network for describing turn penalties, but this method could not apply to large networks as well as dynamic case due to its overwhelming additional works. This paper proposes a link-based shortest path algorithm for the travel information in real road network where exists turn prohibitions. It enables to provide efficient alternative paths under consideration of overlaps among paths. The algorithm builds each path based on the degree of overlapping between each path and stops building new path when the degree of overlapping ratio exceeds its criterion. Because proposed algorithm builds the shortest path based on the link-end cost instead or node cost and constructs path between origin and destination by link connection, the network expansion does not require. Thus it is possible to save the time or network modification and of computer running. Some numerical examples are used for test of the model proposed in the paper.

Optimization of the Truss Structures Using Member Stress Approximate method (응력근사해법(應力近似解法)을 이용한 평면(平面)트러스구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;You, Hee Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.73-84
    • /
    • 1993
  • In this research, configuration design optimization of plane truss structure has been tested by using decomposition technique. In the first level, the problem of transferring the nonlinear programming problem to linear programming problem has been effectively solved and the number of the structural analysis necessary for doing the sensitivity analysis can be decreased by developing stress constraint into member stress approximation according to the design space approach which has been proved to be efficient to the sensitivity analysis. And the weight function has been adopted as cost function in order to minimize structures. For the design constraint, allowable stress, buckling stress, displacement constraint under multi-condition and upper and lower constraints of the design variable are considered. In the second level, the nodal point coordinates of the truss structure are used as coordinating variable and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, unconstrained optimal design problems are easy to solve. The decomposition method which optimize the section areas in the first level and optimize configuration variables in the second level was applied to the plane truss structures. The numerical comparisons with results which are obtained from numerical test for several truss structures with various shapes and any design criteria show that convergence rate is very fast regardless of constraint types and configuration of truss structures. And the optimal configuration of the truss structures obtained in this study is almost the identical one from other results. The total weight couldbe decreased by 5.4% - 15.4% when optimal configuration was accomplished, though there is some difference.

  • PDF

Energy Density Control for the Global Attenuation of Broadband Noise Fields (광대역 잡음의 전역 감쇠를 위한 에너지 밀도 제어)

  • Park, Young-Cheol;Yun, Jeong-Hyeon;Youn, Dae-Hee;Cha, Il-Whan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.21-32
    • /
    • 1996
  • The performance of the energy density control algorithm for controlling a broadband noise is evaluated in a one-dimensional enclosure. To avoid noncausality problem of a control filter, which often happens in a frequency domain optimization, analyses presented in this paper are undertaken in the time domain. This approach provides the form of the causally constrained optimal controller. Numerical results are presented to predict the performance of the active noise control system, and indicate that imp개ved global attenuation of the broadband noise can be achieved by minimizing the energy density, rather than the squared pressure. It is shown that minimizing the energy density at a single location yields global attenuation results that are comparable to minimizing the potential energy. Furthermore, unlike the squared pressure control, the energy density control does not demonstrate any dependence on the error sensor location for this one-dimensional field. A practical implementation of the energy-based control algorithm is presented. Results show that the energy density control can be implemented using the two sensor technique with a tolerable margin of performance degradation.

  • PDF

Vibration Analysis of Large Structures by the Component-Mode Synthesis (부분구조진동형 합성방법에 의한 대형구조계의 진동해석)

  • B.H. Kim;T.Y. Chung;K.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.116-126
    • /
    • 1993
  • The finite element method(FEM) has been commonly used for structural dynamic analysis. However, the direct global application of FEM to large complex structures such as ships and offshore structures requires considerable computational efforts, and remarkably more in structural dynamic optimization problems. Adoption of the component-mode synthesis method is an efficient means to overcome the above difficulty. Among three classes of the component-mode synthesis method, the free-interface mode method is recognized to have the advantages of better computational efficiency and easier implementation of substructures' experimental results, but the disadvantage of lower accuracy in analytical results. In this paper, an advanced method to improve the accuracy in the application of the free-interface mode method for the vibration analysis of large complex structures is presented. In order to compensate the truncation effect of the higher modes of substructures in the synthesis process, both residual inertia and stiffness effects are taken into account and a frequency shifting technique is introduced in the formulation of the residual compliance of substructures. The introduction of the frequency shrift ins not only excludes cumbersome manipulation of singular matrices for semi-definite substructural systems but gives more accurate results around the specified shifting frequency. Numerical examples of typical structural models including a ship-like two dimensional finite element model show that the analysis results based on the presented method are well competitive in accuracy with those obtained by the direst global FEM analysis for the frequencies which are lower than the highest one employed in the synthesis with remarkably higher computational efficiency and that the presented method is more efficient and accurate than the fixed-interface mode method.

  • PDF

The Optimal Configuration of Arch Structures Using Force Approximate Method (부재력(部材力) 근사해법(近似解法)을 이용(利用)한 아치구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;Ro, Min Lae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.95-109
    • /
    • 1993
  • In this study, the optimal configuration of arch structure has been tested by a decomposition technique. The object of this study is to provide the method of optimizing the shapes of both two hinged and fixed arches. The problem of optimal configuration of arch structures includes the interaction formulas, the working stress, and the buckling stress constraints on the assumption that arch ribs can be approximated by a finite number of straight members. On the first level, buckling loads are calculated from the relation of the stiffness matrix and the geometric stiffness matrix by using Rayleigh-Ritz method, and the number of the structural analyses can be decreased by approximating member forces through sensitivity analysis using the design space approach. The objective function is formulated as the total weight of the structures, and the constraints are derived by including the working stress, the buckling stress, and the side limit. On the second level, the nodal point coordinates of the arch structures are used as design variables and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, the problem of optimization can be reduced to unconstrained optimal design problem which is easy to solve. Numerical comparisons with results which are obtained from numerical tests for several arch structures with various shapes and constraints show that convergence rate is very fast regardless of constraint types and configuration of arch structures. And the optimal configuration or the arch structures obtained in this study is almost the identical one from other results. The total weight could be decreased by 17.7%-91.7% when an optimal configuration is accomplished.

  • PDF