• Title/Summary/Keyword: Numerical models

Search Result 4,293, Processing Time 0.039 seconds

A Development of the Bodice Pattern for Male Sports Athletes Using by 3D Virtual Twin & Virtual Garment Simulation (3D 가상모델 및 가상착의 시스템을 이용한 남자 운동선수의 상반신 원형설계)

  • Lim, Ji-Young
    • Fashion & Textile Research Journal
    • /
    • v.12 no.3
    • /
    • pp.347-353
    • /
    • 2010
  • The purpose of this study was to examine the appropriate surplus of clothing for a suitable basic bodice pattern of Male Sports Athletes by using the 3D virtual twin and virtual garment simulation system. The results were as follows; 1. By using 3D virtual twin and garment simulation, new bodice pattern considered male sports athletes was development. The basic numerical formula were as follows ; surplus of chest girth=9, surplus of back length=1, armhole depth=back length/4+13, half back width=chest girth/5+2.5, front chest width=chest girth/5+3. 2. Wearing test by 3D virtual garment simulation system was useful to evaluate wearing outline, surplus of clothes and garment space. Also it estimated more highly than existing pattern in silhouette and ease amount, confirming that new bodice pattern is appropriate for the male sports athletes. New bodice pattern was evaluated to allow proper space length of chest and waist. Virtual models production through 3D body scan data, pattern draft and virtual garment digital program were applied to prototypic design method so as to enhance the fitness of ready-made garments. This study is expected to serve as one of important basic data for ensuing studies that may utilize 3D Virtual Garment Simulation System with 2D patterns, and also for future 3D Pattern Production Program development.

Analysis of the Bearing Behavior of a Tripod Bucket Installed in Clay (점성토 지반에 설치된 Tripod 버켓기초의 지지거동 분석)

  • Kim, Sung-Ryul;eong, Jae-Uk;Oh, Myounghak;Kwon, Osoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.105-111
    • /
    • 2012
  • Bucket foundations, which are used in the foundations of offshore wind turbines, should be able to withstand large amounts of horizontal and moment loads. Tripod bucket foundation, which combines three single buckets, has been used to increase horizontal and moment capacities. This study performed numerical analysis using ABAQUS (2010), to analyze the group effect and the bearing capacity of a tripod bucket in clay. Parametric studies were performed varying the bucket spacing ratio S/D (S=spacing between the centers of the bucket and the tower; D=diameter of the bucket) and depth ratio L/D (L=embedded length of skirt). The applied constitutive models were a linear elastic perfectly plastic model with Tresca yield criteria for normally consolidated clay and an elastic model for buckets. Loading in the vertical, horizontal, and moment directions was simulated with an increase in each movement at a reference point. The bearing behavior and the capacities of a single and a tripod bucket were compared. Capacity evaluation method of the tripod bucket was suggested using the capacity of a single bucket.

System identification of an in-service railroad bridge using wireless smart sensors

  • Kim, Robin E.;Moreu, Fernando;Spencer, Billie F.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.683-698
    • /
    • 2015
  • Railroad bridges form an integral part of railway infrastructure throughout the world. To accommodate increased axel loads, train speeds, and greater volumes of freight traffic, in the presence of changing structural conditions, the load carrying capacity and serviceability of existing bridges must be assessed. One way is through system identification of in-service railroad bridges. To dates, numerous researchers have reported system identification studies with a large portion of their applications being highway bridges. Moreover, most of those models are calibrated at global level, while only a few studies applications have used globally and locally calibrated model. To reach the global and local calibration, both ambient vibration tests and controlled tests need to be performed. Thus, an approach for system identification of a railroad bridge that can be used to assess the bridge in global and local sense is needed. This study presents system identification of a railroad bridge using free vibration data. Wireless smart sensors are employed and provided a portable way to collect data that is then used to determine bridge frequencies and mode shapes. Subsequently, a calibrated finite element model of the bridge provides global and local information of the bridge. The ability of the model to simulate local responses is validated by comparing predicted and measured strain in one of the diagonal members of the truss. This research demonstrates the potential of using measured field data to perform model calibration in a simple and practical manner that will lead to better understanding the state of railroad bridges.

Numerical evaluation of deformation capacity of laced steel-concrete composite beams under monotonic loading

  • Thirumalaiselvi, A.;Anandavalli, N.;Rajasankar, J.;Iyer, Nagesh R.
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.167-184
    • /
    • 2016
  • This paper presents the details of Finite Element (FE) analysis carried out to determine the limiting deformation capacity and failure mode of Laced Steel-Concrete Composite (LSCC) beam, which was proposed and experimentally studied by the authors earlier (Anandavalli et al. 2012). The present study attains significance due to the fact that LSCC beam is found to possess very high deformation capacity at which range, the conventional laboratory experiments are not capable to perform. FE model combining solid, shell and link elements is adopted for modeling the beam geometry and compatible nonlinear material models are employed in the analysis. Besides these, an interface model is also included to appropriately account for the interaction between concrete and steel elements. As the study aims to quantify the limiting deformation capacity and failure mode of the beam, a suitable damage model is made use of in the analysis. The FE model and results of nonlinear static analysis are validated by comparing with the load-deformation response available from experiment. After validation, the analysis is continued to establish the limiting deformation capacity of the beam, which is assumed to synchronise with tensile strain in bottom cover plate reaching the corresponding ultimate value. The results so found indicate about $20^{\circ}$ support rotation for LSCC beam with $45^{\circ}$ lacing. Results of parametric study indicate that the limiting capacity of the LSCC beam is more influenced by the lacing angle and thickness of the cover plate.

Displacement-based design approach for highway bridges with SMA isolators

  • Liu, Jin-Long;Zhu, Songye;Xu, You-Lin;Zhang, Yunfeng
    • Smart Structures and Systems
    • /
    • v.8 no.2
    • /
    • pp.173-190
    • /
    • 2011
  • As a practical and effective seismic resisting technology, the base isolation system has seen extensive applications in buildings and bridges. However, a few problems associated with conventional lead-rubber bearings have been identified after historical strong earthquakes, e.g., excessive permanent deformations of bearings and potential unseating of bridge decks. Recently the applications of shape memory alloys (SMA) have received growing interest in the area of seismic response mitigation. As a result, a variety of SMA-based base isolators have been developed. These novel isolators often lead to minimal permanent deformations due to the self-centering feature of SMA materials. However, a rational design approach is still missing because of the fact that conventional design method cannot be directly applied to these novel devices. In light of this limitation, a displacement-based design approach for highway bridges with SMA isolators is proposed in this paper. Nonlinear response spectra, derived from typical hysteretic models for SMA, are employed in the design procedure. SMA isolators and bridge piers are designed according to the prescribed performance objectives. A prototype reinforced concrete (RC) highway bridge is designed using the proposed design approach. Nonlinear dynamic analyses for different seismic intensity levels are carried out using a computer program called "OpenSees". The efficacy of the displacement-based design approach is validated by numerical simulations. Results indicate that a properly designed RC highway bridge with novel SMA isolators may achieve minor damage and minimal residual deformations under frequent and rare earthquakes. Nonlinear static analysis is also carried out to investigate the failure mechanism and the self-centering ability of the designed highway bridge.

Size-dependent analysis of functionally graded ultra-thin films

  • Shaat, M.;Mahmoud, F.F.;Alshorbagy, A.E.;Alieldin, S.S.;Meletis, E.I.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.431-448
    • /
    • 2012
  • In this paper, the first-order shear deformation theory (FSDT) (Mindlin) for continuum incorporating surface energy is exploited to study the static behavior of ultra-thin functionally graded (FG) plates. The size-dependent mechanical response is very important while the plate thickness reduces to micro/nano scales. Bulk stresses on the surfaces are required to satisfy the surface balance conditions involving surface stresses. Unlike the classical continuum plate models, the bulk transverse normal stress is preserved here. By incorporating the surface energies into the principle of minimum potential energy, a series of continuum governing differential equations which include intrinsic length scales are derived. The modifications over the classical continuum stiffness are also obtained. To illustrate the application of the theory, simply supported micro/nano scaled rectangular films subjected to a transverse mechanical load are investigated. Numerical examples are presented to present the effects of surface energies on the behavior of functionally graded (FG) film, whose effective elastic moduli of its bulk material are represented by the simple power law. The proposed model is then used for a comparison between the continuum analysis of FG ultra-thin plates with and without incorporating surface effects. Also, the transverse shear strain effect is studied by a comparison between the FG plate behavior based on Kirchhoff and Mindlin assumptions. In our analysis the residual surface tension under unstrained conditions and the surface Lame constants are expected to be the same for the upper and lower surfaces of the FG plate. The proposed model is verified by previous work.

Confined concrete model of circular, elliptical and octagonal CFST short columns

  • Patel, Vipulkumar I.;Uy, Brian;Prajwal, K.A.;Aslani, Farhad
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.497-520
    • /
    • 2016
  • The confined concrete stress-strain curves utilised in computational models of concrete-filled steel tubular (CFST) columns can have a significant influence on the accuracy of the predicted behaviour. A generic model is proposed for predicting the stress-strain behaviour of confined concrete in short circular, elliptical and octagonal CFST columns subjected to axial compression. The finite element (FE) analysis is carried out to simulate the concrete confining pressure in short circular, elliptical and octagonal CFST columns. The concrete confining pressure relies on the geometric and material parameters of CFST columns. The post-peak behaviour of the concrete stress-strain curve is determined using independent existing experimental results. The strength reduction factor is derived for predicting the descending part of the confined concrete behaviour. The fibre element model is developed for the analysis of circular, elliptical and octagonal CFST short columns under axial loading. The FE model and fibre element model accounting for the proposed concrete confined model is verified by comparing the computed results with experimental results. The ultimate axial strengths and complete axial load-strain curves obtained from the FE model and fibre element model agree reasonably well with experimental results. Parametric studies have been carried out to examine the effects of important parameters on the compressive behaviour of short circular, elliptical and octagonal CFST columns. The design model proposed by Liang and Fragomeni (2009) for short circular, elliptical and octagonal CFST columns is validated by comparing the predicted results with experimental results.

Numerical study of steel sandwich plates with RPF and VR cores materials under free air blast loads

  • Rashad, Mohamed;Yang, T.Y.
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.717-725
    • /
    • 2018
  • One of the most important design criteria in military tunnels and armoured doors is to resist the blast loads with minimum structural weight. This can be achieved by using steel sandwich panels. In this paper, the nonlinear behaviour of steel sandwich panels, with different core materials: (1) Hollow (no core material); (2) Rigid Polyurethane Foam (RPF); and (3) Vulcanized Rubber (VR) under free air blast loads, was investigated using detailed 3D nonlinear finite element models in Ansys Autodyn. The accuracy of the finite element model proposed was verified using available experimental test data of a similar steel sandwich panel tested. The results show the developed finite element model can be reliably used to simulate the nonlinear behaviour of the steel sandwich panels under free air blast loads. The verified finite element model was used to examine the different parameters of the steel sandwich panel with different core materials. The result shows that the sandwich panel with RPF core material is more efficient than the VR sandwich panel followed by the Hollow sandwich panels. The average maximum displacement of RPF sandwich panel under different ranges of TNT charge (1 kg to 10 kg at a standoff distance of 1 m) is 49% and 53% less than the VR and Hollow sandwich panels, respectively. Detailed empirical design equations were provided to quantify the maximum deformation of the steel sandwich panels with different core materials and core thickness under a different range of blast loads. The developed equations can be used as a guide for engineer to design steel sandwich panels with RPF and VR core material under a different range of free air blast loads.

Temperature analysis of a long-span suspension bridge based on a time-varying solar radiation model

  • Xia, Qi;Liu, Senlin;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.23-35
    • /
    • 2020
  • It is important to take into account the thermal behavior in assessing the structural condition of bridges. An effective method of studying the temperature effect of long-span bridges is numerical simulation based on the solar radiation models. This study aims to develop a time-varying solar radiation model which can consider the real-time weather changes, such as a cloud cover. A statistical analysis of the long-term monitoring data is first performed, especially on the temperature data between the south and north anchors of the bridge, to confirm that temperature difference can be used to describe real-time weather changes. Second, a defect in the traditional solar radiation model is detected in the temperature field simulation, whereby the value of the turbidity coefficient tu is subjective and cannot be used to describe the weather changes in real-time. Therefore, a new solar radiation model with modified turbidity coefficient γ is first established on the temperature difference between the south and north anchors. Third, the temperature data of several days are selected for model validation, with the results showing that the simulated temperature distribution is in good agreement with the measured temperature, while the calculated results by the traditional model had minor errors because the turbidity coefficient tu is uncertainty. In addition, the vertical and transverse temperature gradient of a typical cross-section and the temperature distribution of the tower are also studied.

Experimental and numerical study on large-curvature curved composite box girder under hogging moment

  • Zhu, Li;Wang, Jia J.;Zhao, Guan Y.;Huo, Xue J.;Li, Xuan
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.117-136
    • /
    • 2020
  • Curved steel-concrete composite box girder has been widely adopted in urban overpasses and ramp bridges. In order to investigate its mechanical behavior under complicated and combined bending, shear and torsion load, two large-curvature composite box girders with interior angles of 25° and 45° were tested under static hogging moment. Based on the strain and deflection measurement on critical cross-sections during the static loading test, the failure mode, cracking behavior, load-displacement relationship, and strain distribution in the steel plate and rebar were investigated in detail. The test result showed the large-curvature composite box girders exhibited notable shear lag in the concrete slab and steel girder. Also, the constraint torsion and distortion effect caused the stress measured at the inner side of the composite beam to be notably higher than that of the outer side. The strain distribution in the steel web was approximately linear; therefore, the assumption that the plane section remains plane was approximately validated based on strain measurement at steel web. Furthermore, the full-process non-linear elaborate finite element (FE) models of the two specimens were developed based on commercial FE software MSC.MARC. The modeling scheme and constitutive model were illustrated in detail. Based on the comparison between the FE model and test results, the FE model effectively simulated the failure mode, the load-displacement curve, and the strain development of longitudinal rebar and steel girder with sufficient accuracy. The comparison between the FE model and the test result validated the accuracy of the developed FE model.