• Title/Summary/Keyword: Numerical models

Search Result 4,293, Processing Time 0.038 seconds

An Optimal FIR Filter for Discrete Time-varying State Space Models (이산 시변 상태공간 모델을 위한 최적 유한 임펄스 응답 필터)

  • Kwon, Bo-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1183-1187
    • /
    • 2011
  • In this paper, an optimal FIR (Finite-Impulse-Response) filter is proposed for discrete time-varying state-space models. The proposed filter estimates the current state using measured output samples on the recent time horizon so that the variance of the estimation error is minimized. It is designed to be linear, unbiased, with an FIR structure, and is independent of any state information. Due to its FIR structure, the proposed filter is believed to be robust for modeling uncertainty or numerical errors than other IIR filters, such as the Kalman filter. For a general system with system and measurement noise, the proposed filter is derived without any artificial assumptions such as the nonsingular assumption of the system matrix A and any infinite covariance of the initial state. A numerical example show that the proposed FIR filter has better performance than the Kalman filter based on the IIR (Infinite- Impulse-Response) structure when modeling uncertainties exist.

On modeling coupling beams incorporating strain-hardening cement-based composites

  • Hung, Chung-Chan;Su, Yen-Fang
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.565-583
    • /
    • 2013
  • Existing numerical models for strain-hardening cement-based composites (SHCC) are short of providing sufficiently accurate solutions to the failure patterns of coupling beams of different designs. The objective of this study is to develop an effective model that is capable of simulating the nonlinear behavior of SHCC coupling beams subjected to cyclic loading. The beam model proposed in this study is a macro-scale plane stress model. The effects of cracks on the macro-scale behavior of SHCC coupling beams are smeared in an anisotropic model. In particular, the influence of the defined crack orientations on the simulation accuracy is explored. Extensive experimental data from coupling beams with different failure patterns are employed to evaluate the validity of the proposed SHCC coupling beam models. The results show that the use of the suggested shear stiffness retention factor for damaged SHCC coupling beams is able to effectively enhance the simulation accuracy, especially for shear-critical SHCC coupling beams. In addition, the definition of crack orientation for damaged coupling beams is found to be a critical factor influencing the simulation accuracy.

Effect of model calibration on seismic behaviour of a historical mosque

  • Demir, Ali;Nohutcu, Halil;Ercan, Emre;Hokelekli, Emin;Altintas, Gokhan
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.749-760
    • /
    • 2016
  • The objective of the study is to investigate the effects of model calibration on seismic behaviour of a historical mosque which is one of the most significant Ottomon structures. Seismic analyses of calibrated and noncalibrated numeric models were carried out by using acceleration records of Kocaeli earthquake in 1999. In numerical analysis, existing crack zones on real structure was investigated in detail. As a result of analyses, maximum stresses and displacements of calibrated and noncalibrated numerical models were compared each other. Consequently, seismic behaviour and damage state of historical masonry Hafsa Sultan mosque was determined as more realistic in the event of a severe earthquake.

Numerical Analysis of the Subsurface Vortices in the Pump Sump Models (펌프 흡입수조 모형시험에서의 수중와에 대한 유동해석)

  • Kim, Jin-Young;Chung, Kyung-Nam;Kim, Hyu-Gon;Kim, Young-Hak
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.593-597
    • /
    • 2005
  • In order to study the characteristics of the subsurface vortex the flow fields of the three pump sump models were analysed by the numerical simulation. The calculation results show that there are circulation flows in the pump sump model and maximum vorticity strength which make iso-surface from the wall to the pump inlet could be used for predicting the subsurface vortex generation. Also, the flow field for the sump model with anti-vortex devices simulated and the results shows that there is no vorticity value which make iso-surface from the sump wall to the pump inlet.

  • PDF

Sub-surface Stress Analysis on Spur Gear Teeth in the EHL Conditions

  • Koo, Young-Pil;Kim, Tae-Wan;Cho, Yong-Joo
    • KSTLE International Journal
    • /
    • v.5 no.1
    • /
    • pp.14-22
    • /
    • 2004
  • The sub-surface stress field beneath the gear's contact surface caused by the surface pressure in lubricated condition is analyzed. To evaluate the influence of the clearances between a gear tooth and a pinion tooth on the stress field, two kinds of tooth profile models - conventional cylinder contact model and new numerical model - were chosen. Kinematics of the gear is taken into account to obtain the numerical model which is the accurate geometric clearances between a gear tooth and a pinion tooth. Transient elasto-hydrodynamic lubrication (EHL) analysis is performed to get the surface pressure. The sub-stress field is obtained by using Love's rectangular patch solution. The analysis results show that the sub-surface stress is quite dependent on both the surface pressures and the profile models. The maximum effective stress of the new model is lower than that of the old model. The depth where the maximum effective stress occurs in the new model is not proportional to the intensity of the external load.

Modeling of Spray Atomization of Fuel Injector Using Hybrid Model (복합 모델을 이용한 연료 인젝터의 분무 미립화 모델링)

  • Park, Sung-Wook;Kim, Hyung-Jun;Rhyu, Youl;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.27-33
    • /
    • 2002
  • This paper presents the comparison of prediction accuracy of hybrid models. To obtain the experimental results fur comparing with the numerical results, the macroscopic and microscopic structures of the hollow-cone spray such as spray development process, spray penetration and the distribution of mean droplet size are investigated by using a shadowgraph technique and phase Doppler particle analyzer. Also, the numerical researches using various hybrid models are performed. LISA model and WAVE model are used for the primary breakup, and TAB, DDB, and RT model are used for the secondary breakup.

COLOR GRADIENTS WITHIN GLOBULAR CLUSTERS: RESTRICED NUMERICAL SIMULATION

  • Sohn, Young-Jong;Chun, Mun-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.1-17
    • /
    • 1997
  • The results of a restricted numerical simulation for the color gradients within globular clusters have been presented. The standard luminosity function of M3 and Salperter's initial mass functions were used to generate model clusters as a fundamental population. Color gradients with the sample clusters for both King and power law cusp models of surface brightness distributions are discussed in the case of using the standard luminosity function. The dependence of color gradients on several parameters for the simulations with Salpter's initial mass functions, such as slope of initial mass functions, cluster ages, metallicities, concentration parameters of King model, and slopes of power law, are also discussed. No significant radial color gradients are shown to the sample clusters which are regenerated by a random number generation technique with various parameters in both of King and power law cusp models of surface brightness distributions. Dynamical mass segregation and stellar evolution of horizontal branch stars and blue stragglers should be included for the general case of model simulations to show the observed radial color gradients within globular clusters.

  • PDF

Unbonded tendon model considering time-dependent behavior (시간의존적 거동을 고려한 비부착 텐던 모델)

  • Park, Jae-Guen;Choi, Jung-Ho;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.463-466
    • /
    • 2005
  • The purpose of this study is to develop of unbonded tendon model considering time-dependent behavior. In this paper, a numerical model for unbanded tendon is proposed based on the finite element method, which can represent straight or curved unbonded tendon behavior. This model and time-dependent material model are used to investigate the time-dependent behaviors of unbonded prestressed concrete structures. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of concrete structures was used. The material nonlinearities are taken into account by comprising the tension, compression, and shear models of cracked concrete and models for reinforcements and tendons in the concrete. The smeared crack approach is incorporated. It accounts for the aging, creep and shrinkage of concrete and the stress relaxation of prestressing steel. The proposed unbonded tendon model and numerical method for time-dependent behavior of unbonded prestressed concrete structures is verified by comparison with reliable experimental results.

  • PDF

Seismic mitigation of an existing building by connecting to a base-isolated building with visco-elastic dampers

  • Yang, Zhidong;Lam, Eddie S.S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.57-71
    • /
    • 2015
  • This study investigates the feasibility of retrofitting an existing building by connecting the existing building to a new building using connecting dampers. The new building is base-isolated and viscoelastic dampers are assigned as connecting dampers. Scaled models are tested under three different earthquake records using a shaking table. The existing building and the new building are 9 and 8 stories respectively. The existing building model shows more than 3% increase in damping ratio. The maximum dynamic responses and the root mean square responses of the existing building model to earthquakes are substantially reduced by at least 20% and 59% respectively. Further, numerical models are developed by conducting time-history analysis to predict the performance of the proposed seismic mitigation system. The predictions agree well with the test results. Numerical simulations are carried out to optimize the properties of connecting dampers and base isolators. It is demonstrated that more than 50% of the peak responses can be reduced by properly adjusting the properties of connecting dampers and base isolators.

Thermal Deformation of Curved Plates by Line Heating (선상가열법에 의한 곡판의 열변형)

  • LEE JOO-SUNG;LIM DONG-YONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.33-38
    • /
    • 2005
  • It has been well documented that plate forming is one of the most important processes in shipbuilding. In the most shipyards, the line heating method is primarily used for plate forming. Since the heating process is carried out for the curved plate and not for the flat plate, a curvature effect on the final deformation must be considered in deriving the simplified prediction models for deformation. This paper investigates the effect of curvature along the heating line on the deformation of the plate. First of all, results of numerical analysis are compared with these of a line-heating test, to justify the elasto-plastic analysis procedure for the present study, which shows good agreement. Then, the present numerical procedure is applied to flat and curved plate models, to investigate the curvature effect on the heat transfer characteristics and deformation by line heating.