• Title/Summary/Keyword: Numerical models

Search Result 4,293, Processing Time 0.033 seconds

Tension-Shear Experimental Analysis and Fracture Models Calibration on Q235 Steel

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Yazhi;Zhu, Dongping;Lu, Lu
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1784-1800
    • /
    • 2018
  • Tension-shear loading is a common loading condition in steel structures during the earthquake shaking. To study ductile fracture in structural steel under multiple stress states, experimental investigations on the different fracture mechanisms in Chinese Q235 steel were conducted. Different tension-shear loading conditions achieved by using six groups of inclined notch butterfly configurations covering pure shear, tension-shear and pure tension cases. Numerical simulations were carried out for all the specimens to determine the stress and strain fields within the critical sections. Two tension-shear fracture models were calibrated based on the hybrid experimental-numerical procedure. The equivalent fracture strain obtained from the round bar under tensile loading was used for evaluating these two models. The results indicated that the tension-shear criterion as a function of the shear fracture parameter had better performance in predicting the fracture initiation of structural steel under different loading conditions.

Analysis of Numerical Model Wave Predictions for Coastal Waters at Gunsan-Janghang Harbor Entrance

  • Lee Joong-Woo;Lee Hak-Seung;Lee Hoon;Jeon Min-Su;Kim Kang-Min
    • Journal of Navigation and Port Research
    • /
    • v.29 no.7
    • /
    • pp.627-634
    • /
    • 2005
  • Gunsan-Janghang Harbor is located at the mouth of Gum River, on the central west coast of Korea The harbor and coastal boundaries are protected from the effects of the open ocean by natural coastal islands and shoals due to depositions from the river, and two breakwaters. The navigation channel commences at the gap formed by the outer breakwater and extends through a bay via a long channel formed by an isolated jetty. For better understanding and analysis of wave transformation process where a wide coastline changes appear due to on-going reclamation works, we applied the spectral wave model including wind effect to the related site, together with the energy balance models. This paper summarizes comparisons of coastal responses predicted by several numerical wave predictions obtained at the coastal waters near Gunsan-Janghang Harbor. Field and numerical model investigations were initially conducted for the original navigation channel management project. We hope to contribute from this study that coastal engineers are able to use safety the numerical models in the area of port and navigational channel design.

A Numerical Analysis for Fire Spread Mechanism of Residential Building Fire (주거용 건축물의 화염전파 현상에 대한 수치해석적 검토)

  • Ahn, Chan-Sol;Kim, Heung-Youl;You, Yong-Ho;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • This study is intended to present a computational thermal model for a residential building. As the Performance Based Design is more popular, fire-intensity and fire-load have turned out to be very important factors for building design and can be predicted through some computational work. To predict and estimate the fire properties of a residential fire, we made some numerical models of combustibles and residential building. In a bid to validate the estimate values, computational analysis results from numerical models were compared with real fire tests. For computational analysis, the Fire Dynamics Simulator (FDS) was used with Large Eddy Simulation (LES) model for turbulence. Consequently, fire-intensity was well predicted and flash-over of rooms were successfully estimated.

Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques

  • Kankeri, Pradeep;Prakash, S. Suriya;Pachalla, Sameer Kumar Sarma
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.535-546
    • /
    • 2018
  • The objective of this study is to understand the behaviour of hollow core slabs strengthened with FRP and hybrid techniques through numerical and analytical studies. Different strengthening techniques considered in this study are (i) External Bonding (EB) of Carbon Fiber Reinforced Polymer (CFRP) laminates, (ii) Near Surface Mounting (NSM) of CFRP laminates, (iii) Bonded Overlay (BO) using concrete layer, and (iv) hybrid strengthening which is a combination of bonded overlay and NSM or EB. In the numerical studies, three-dimensional Finite Element (FE) models of hollow core slabs were developed considering material and geometrical nonlinearities, and a phased nonlinear analysis was carried out. The analytical calculations were carried out using Response-2000 program which is based on Modified Compression Field Theory (MCFT). Both the numerical and analytical models predicted the behaviour in agreement with experimental results. Parametric studies indicated that increase in the bonded overlay thickness increases the peak load capacity without reducing the displacement ductility. The increase in FRP strengthening ratio increased the capacity but reduced the displacement ductility. The hybrid strengthening technique was found to increase the capacity of the hollow core slabs by more than 100% without compromise in ductility when compared to their individual strengthening schemes.

Logic circuit design for high-speed computing of dynamic response in real-time hybrid simulation using FPGA-based system

  • Igarashi, Akira
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1131-1150
    • /
    • 2014
  • One of the issues in extending the range of applicable problems of real-time hybrid simulation is the computation speed of the simulator when large-scale computational models with a large number of DOF are used. In this study, functionality of real-time dynamic simulation of MDOF systems is achieved by creating a logic circuit that performs the step-by-step numerical time integration of the equations of motion of the system. The designed logic circuit can be implemented to an FPGA-based system; FPGA (Field Programmable Gate Array) allows large-scale parallel computing by implementing a number of arithmetic operators within the device. The operator splitting method is used as the numerical time integration scheme. The logic circuit consists of blocks of circuits that perform numerical arithmetic operations that appear in the integration scheme, including addition and multiplication of floating-point numbers, registers to store the intermediate data, and data busses connecting these elements to transmit various information including the floating-point numerical data among them. Case study on several types of linear and nonlinear MDOF system models shows that use of resource sharing in logic synthesis is crucial for effective application of FPGA to real-time dynamic simulation of structural response with time step interval of 1 ms.

Numerical Analysis of Wind Turbine Scale Effect by Using Computational Fluid Dynamics (전산유체역학을 이용한 풍력터빈 축소효과 수치해석)

  • Park Young-Min;Chang Byeong-Hee
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.28-36
    • /
    • 2006
  • Numerical analysis of wind turbine scale effect was performed by using commercial CFD code, Fluent. For the numerical analysis of wind turbine, the three dimensional Navier-Stokes solver with various turbulence models was tested. As a turbulence mode, the realizable k-e turbulence model was selected for the simulation of wind turbines. To validate the present method, performance of NREL (National Renewable Energy Laboratory) Phase VI wind turbine model was analyzed and compared with its wind tunnel test and blind test data. Using the present method, numerical simulations for various size of wind tunnel models were carried out and characteristics were analyzed in detail. For wind tunnel test model, the size of nacelle may not be scaled down precisely because of available motor. The effect of nacelle size was also computed and analyzed though CFD simulation. The present results showed the good correlations in pre-stall region but much to be improved in post-stall region. In 2006 and 2007, the performance and the scale effect of standard wind turbine model will be tested in KARI(Korea Aerospace Research Institute) LSWT(Low Speed Wind Tunnel) and the present results will be validated with the wind tunnel data.

  • PDF

Numerical evaluation of the effect of multiple roughness changes

  • Abdi, Daniel S.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • v.19 no.6
    • /
    • pp.585-601
    • /
    • 2014
  • The effect of multiple roughness changes close to a building site was examined through three dimensional computational fluid dynamics (CFD) simulations conducted in a virtual boundary layer wind tunnel (V-BLWT). The results obtained were compared with existing wind speed models, namely ESDU-82026 and Wang and Stathopoulos (WS) model. The latter was verified by wind tunnel tests of sixty nine cases of multiple roughness patches, and also with a simplified 2D numerical model. This work extends that numerical study to three dimensions and also models roughness elements explicitly. The current numerical study shows better agreement with the WS model, that has shown better agreements with BLWT tests, than the ESDU model. This is in contrast to previous results of Wang and Stathopoulos, who concluded that CFD shows better agreement with the ESDU model. Many cases were simulated in a V-BLWT that has same dimensions as BLWT used in the original experiment and also in a reduced symmetrical version (S-BLWT) that takes advantage of regular arrangement of roughness blocks. The S-BLWT gives results almost identical to V-BLWT simulations, while achieving significant reduction on computational time and resources.

A Study for Thermal Mechanism of Residential Combustibles with Numerical Modeling (주거공간 단위가연물의 열역학적 수치해석 모델링에 관한 연구)

  • Ahn, Chan-Sol;Kim, Jung-Yup;You, Yong-Ho;Kweon, Oh-Sang;Joo, Sang-Hyun
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.58-63
    • /
    • 2011
  • This study is intended to present a computational thermal model for the combustibles in a residential building. As the Performance Based Design is more popular, fire-intensity and fire-load have turned out to be very important factors for building design and can be predicted through some computational work. To predict and estimate the thermal properties of the residential combustible fire, we made some numerical models of combustibles in a residential building. In a bid to validate the estimate values, computational analysis results from numerical models were compared with real fire tests. For computational analysis, the Fire Dynamics Simulator was used with Large Eddy Simulation model for turbulence. Consequently, each heat release rate and total heat release curves were successfully estimated.

Numerical Experiments for the Stress-Reducing Preventive Maintenance Model (수치실험을 통한 스트레스 감소 예방보수모형의 고찰)

  • Park, Jong Hun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.3
    • /
    • pp.41-52
    • /
    • 2020
  • This paper investigates the stress-reducing preventive maintenance model through numerical experiments. The preventive maintenance model is used to analyze the relationship between related conditions and variables to gain insight into the efficient operation of the system when performing preventive maintenance in real-world situations. Various preventive maintenance models have been developed over the past decades and their complexity has increased in recent years. Increasing complexity is essential to reflect reality, but recent models can only be interpreted through numerical experiments. The stress-reducing preventive maintenance is a newly introduced preventive maintenance concept and can only be interpreted numerically due to its complexity, and has received little attention because the concept is unfamiliar. Therefore, for information purposes, this paper investigates the characteristics of the stress-reducing preventive maintenance and the relationship between parameters and variables through numerical experiments. In particular, this paper is focusing on the economic feasibility of stress-reducing preventive maintenance by observing changes in the optimal preventive maintenance period in response to changes in environmental stress and the improvement factor. As a result, when either the environmental stress or the improve effect of stress-reducing preventive maintenance is low, it is not necessary to carry out the stress-reducing preventive maintenance at excessive cost. In addition, it was found that the age reduction model is more economical than the failure rate reduction model.

Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading

  • Shariati, M.;Hatami, H.;Torabi, H.;Epakchi, H.R.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.753-762
    • /
    • 2012
  • The ratcheting characteristics of cylindrical shell under cyclic axial loading are investigated. The specimens are subjected to stress-controlled cycling with non-zero mean stress, which causes the accumulation of plastic strain or ratcheting behavior in continuous cycles. Also, cylindrical shell shows softening behavior under symmetric axial strain-controlled loading and due to the localized buckling, which occurs in the compressive stress-strain curve of the shell; it has more residual plastic strain in comparison to the tensile stress-strain hysteresis curve. The numerical analysis was carried out by ABAQUS software using hardening models. The nonlinear isotropic/kinematic hardening model accurately simulates the ratcheting behavior of shell. Although hardening models are incapable of simulating the softening behavior of the shell, this model analyzes the softening behavior well. Moreover, the model calculates the residual plastic strain close to the experimental data. Experimental tests were performed using an INSTRON 8802 servo-hydraulic machine. Simulations show good agreement between numerical and experimental results. The results reveal that the rate of plastic strain accumulation increases for the first few cycles and then reduces in the subsequent cycles. This reduction is more rapid for numerical results in comparison to experiments.