• 제목/요약/키워드: Numerical model experiments

검색결과 1,465건 처리시간 0.027초

준정류모형을 이용한 하천의 준설 웅덩이 발달 모의 (Numerical Simulations of Developing Mining Pit using Quasi-Steady Model)

  • 최성욱;최성욱
    • 대한토목학회논문집
    • /
    • 제32권1B호
    • /
    • pp.53-57
    • /
    • 2012
  • 본 연구에서는 하천에서 준설 웅덩이의 발달과정을 모의할 수 있는 수치모형을 제시하였다. 제시된 수치모형은 준정류 가정에 기초하는데, 이는 흐름은 정상류이고 하상은 시간에 따라 변한다고 가정하는 것이다. 준정류 모형은 흐름에 비해 하도 변형이 장기간에 걸쳐 진행된다는 사실에 근거한다. 총유사량 공식으로 Engelund and Hansen 공식과 Ackers and White 공식을 이용하여 수치실험을 실시하였다. Engelund and Hansen 공식을 사용하였을 때, Parker(2004)에 제시된 준설웅덩이의 되메움 과정을 정량적으로 유사하게 모의하는 것으로 나타났다. 제시된 모형의 적용성을 검토하기 위하여 선행 실내실험에 적용하였다. 전반적으로 준정류 모형이 실험수로에서 웅덩이의 발달과정을 잘 모의하는 것으로 확인되었다. 그러나 수치모형이 웅덩이 상류측으로 전파되는 두부침식 현상을 재현하지 못하며, 되메움 이후 하류로 전파되는 하상파를 과소 산정하는 것으로 나타났다.

$45^{\circ}$ 원형충돌분류의 난류혼합유동장에 대한 수치해석 (Numerical Analysis on the Turbulent Mixing Flow Field of $45^{\circ}$ Impinging Round Jet)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제15권3호
    • /
    • pp.38-45
    • /
    • 2011
  • The computational flow numerical analysis was introduced to predict thc turbulent characteristics in the mixing flow structure of $45^{\circ}$ impinging round jet. This analysis has been carried out through the commercial fluent software. Realizable(RLZ) k-${\varepsilon}$ was used as a turbulent model. It can be known that mean velocities analysed through RLZ k-${\varepsilon}$ turbulent model comparatively predict well the experiments and show well the elliptic shape of mixing flow structure in the Y-Z plane, but analysed turbulent kinetic energies show somewhat differently from the experiments in certain regions.

수치모형실험을 통한 콘크리트 구조물의 결함탐지에 관한 연구 (Numerical Experiments for Detecting Voids and Defects Inside Concrete)

  • 김용인;변중무;손권익;서백수
    • 산업기술연구
    • /
    • 제24권B호
    • /
    • pp.163-170
    • /
    • 2004
  • In this study, First, the results of travel-time inversion (first arrival inversion using the travel-time of the first arrival) were compared with those of full-wave inversion for numerical data. Numerical experiments to find key parameters other than initial velocity model showed that the frequency of source has a great effect on the result of full-wave inversion. Finally, this research presented the corrected full-wave inversion applying the correction term to the final result of full-wave inversion. The corrected full-wave inversion depicted cavities inside concretes even when the inversion started with 20% error in an initial velocity model for cavities. However, full-wave inversion did not reveal cavities.

  • PDF

원형파일군에 의한 파랑의 감쇠특성 (Characteristics of Wave Dissipation with Circular Cylinders)

  • 이성대;박정철;홍창배;남미영
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.573-574
    • /
    • 2006
  • This research deals with the wave transmission and dissipation problems for two dimensional regular waves and s vertical circular cylindersr. Using the unsteady mild slope equation, a numerical model has been developed to calculate the reflection and transmission of regular waves from a multiple-row vertical circular cylinders. In addition hydraulic model experiments have been conducted with different values of properties between the cylinders and opening ratio (distances) between the rows of the cylinders. It is found that the transmission coefficients decrease with decreasing the opening ratio and increasing the rows of vertical cylinders. Comparison between hydralic and numerical experiments results shows resonable agreement.

  • PDF

Numerical simulation of cavitating flow past cylinders

  • Park, Warn-Gyu;Koo, Tae-Kyoung;Jung, Chul-Min;Lee, Kurn-Chul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.327-333
    • /
    • 2008
  • The cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has developed a base code for simulating cavitating flows past cylinders and hydrofoils. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved in liquid and vapor phase, separately. The solver employs an implicit preconditioning algorithm in curvilinear coordinates. The computations have been carried out for the cylinders with spherical, 1- and 0-caliber forebody and hydrofoil of ALE and NACA cross-section and, then, compared with experiments and other numerical results. Fairly good agreements with experiments and numerical results have been achieved. The present base code has shown the feasibility to solve the cavitating flow past supercavitating torpedo after the improvement for compressibility effects and interactions with hot exhaust gas of propulsive rocket.

  • PDF

레이저 및 전자빔을 이용한 표면 열처리 (Heat Treatment Using a Laser Beam or an Electron Beam)

  • 김홍준;최우천;권영각
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.427-432
    • /
    • 1995
  • Surface heat treatment using a laser beam or an electron beam is studied through numerical analyses and experiments. For the surface heat treatment process, a theoretical model is developed to predict the effects of laser beam power, travel speed and properties of a workpiece on the depth and width of the heat affected zone(HAZ). The shape of HAZ and the hardness of heat-treated surface are experimentally obtained using an electron beam. Three materials(SS41, S45C and S55C) are selected as workpiece materials. The hardness of HAZ is increased up to 3 times for materials of a low carbon content. The results of the numerical analysis are compared with those of experiments. The comparison shows that the numerical model predicts larger depths and widths.

Numerical simulation of cavitating flow past cylinders

  • Park, Warn-Gyu;Koo, Tae-Kyoung;Jung, Chul-Min;Lee, Kurn-Chul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.327-333
    • /
    • 2008
  • The cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has developed a base code for simulating cavitating flows past cylinders and hydrofoils. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved in liquid and vapor phase, separately. The solver employs an implicit preconditioning algorithm in curvilinear coordinates. The computations have been carried out for the cylinders with spherical, 1- and 0-caliber forebody and hydrofoil of ALE and NACA cross-section and, then, compared with experiments and other numerical results. Fairly good agreements with experiments and numerical results have been achieved. The present base code has shown the feasibility to solve the cavitating flow past supercavitating torpedo after the improvement for compressibility effects and interactions with hot exhaust gas of propulsive rocket.

  • PDF

FEM investigation of SFRCs using a substepping integration of constitutive equations

  • Golpasand, Gholamreza B.;Farzam, Masood;Shishvan, Siamak S.
    • Computers and Concrete
    • /
    • 제25권2호
    • /
    • pp.181-192
    • /
    • 2020
  • Nowadays, steel fiber reinforced concretes (SFRCs) are widely used in practical applications. Significant experimental research has thus been carried out to determine the constitutive equations that represent the behavior of SFRCs under multiaxial loadings. However, numerical modelling of SFRCs via FEM has been challenging due to the complexities of the implementation of these constitutive equations. In this study, following the literature, a plasticity model is constructed for the behavior of SFRCs that involves the Willam-Warnke failure surface with the relevant evolution laws and a non-associated flow rule for determining the plastic deformations. For the precise (yet rapid) integration of the constitutive equations, an explicit substepping scheme consisting of yield intersection and drift correction algorithms is employed and thus implemented in ABAQUS via UMAT. The FEM model includes various material parameters that are determined from the experimental data. Three sets of parameters are used in the numerical simulations. While the first set is from the experiments that are conducted in this study on SFRC specimens with various contents of steel fibers, the other two sets are from the experiments reported in the literature. The response of SFRCs under multiaxial compression obtained from various numerical simulations are compared with the experimental data. The good agreement between numerical results and the experimental data indicates that not only the adopted plasticity model represents the behavior of SFRCs very well but also the implemented integration scheme can be employed in practical applications of SFRCs.

로짓모형에 있어서 다중공선성의 영향에 관한 연구 (Effects of Multicollinearity in Logit Model)

  • 류시균
    • 대한교통학회지
    • /
    • 제26권1호
    • /
    • pp.113-126
    • /
    • 2008
  • 비확률변수간 선형관계로 정의되는 다중공선성은 설명변수간 선형방정식으로 표현되는 회귀모형의 신뢰도를 저하시키기 때문에 회귀모형의 구축과정에서는 세심한 검토와 대응이 이루어진다. 본 연구에서는 구조화된 수치실험을 통해서 로짓모형에 대한 다중공선성의 영향을 규명하였다. 효용함수를 구성하는 설명변수들간 상관관계의 정도에 따라서 추정된 모형의 적합도 지표와 계수의 신뢰도 지표가 어떻게 변동하는 지를 추적함으로써 다음과 같은 시사점을 확인할 수 있었다. 첫째, 설명변수의 추가를 통해서 모델의 적합도 개선이 가능한 회귀모형과 달리, 로짓모형에서는 효용함수에 설명변수를 추가하는 경우 로짓모형의 적합도가 개선될 수도, 역으로 저하될 수도 있음이 확인되었다. 둘째, 공통의 계수를 갖도록 모델을 구성하면 제네릭 변수간 상관관계가 높아짐에 따라 모델의 적합도가 저하됨을 확인하였다. 셋째, 설명 변수간 상관관계가 높은 경우 선택행동에 대한 설명변수의 기여도가 과대평가될 가능성을 확인하였다. 넷째, 설명변수간 상관관계가 높으면 추정된 계수의 신뢰도가 저하됨을 확인하였다. 결론적으로 본 연구를 통해서 그동안 로짓모형의 구축과정에서는 주목받지 못했던 다중공선성이 실제로는 세심한 배려와 적절한 대응을 통해서 제어되어야 함이 규명되었다.

한반도 풍력자원 평가를 위한 초기 공간해상도와 위성자료 동화의 관계 분석 (Analysis of the Relation between Spatial Resolution of Initial Data and Satellite Data Assimilation for the Evaluation of Wind Resources in the Korean Peninsula)

  • 이순환;이화운;김동혁;김현구
    • 한국대기환경학회지
    • /
    • 제23권6호
    • /
    • pp.653-665
    • /
    • 2007
  • Several numerical experiments were carried out to clarify the influence of satellite data assimilation with various spatial resolution on mesoscale meteorological wind and temperature field. Satellite data used in this study is QuikSCAT launched on ADEOS II. QuikSCAT data is reasonable and faithful sea wind data, which have been verified through many observational studies. And numerical model in the study is MM5 developed by NCAR. Difference of wind pattern with and without satellite data assimilation appeared clearly, especially wind speed dramatically reduced on East Sea, when satellite data assimilation worked. And sea breeze is stronger in numerical experiments with RDAPS and satellite data assimilation than that with CDAS and data assimilation. This caused the lower estimated surface temperature in CDAS used cases. Therefore the influence of satellite data assimilation acts differently according to initial data quality. And it is necessary to make attention careful to handle the initial data for numerical simulations.