• Title/Summary/Keyword: Numerical laboratory

Search Result 2,138, Processing Time 0.039 seconds

Numerical Design Method for Water-Lubricated Hybrid Sliding Bearings

  • Feng, Liu;Bin, Lin;Xiaofeng, Zhang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.47-50
    • /
    • 2008
  • This paper presents a new water-lubricated hybrid sliding bearing for a high speed and high accuracy main shaft system, along with the numerical method used for its design. The porous material for the restrictor and the restriction parameter were chosen based on the special requirements of the water-lubricated bearing. Subsequent numerical calculations give the load capacity, stiffness, and friction power of different forms of water-lubricated bearings. The pressure distribution of the water film in a 6-cavity bearing is shown, based on the results of the numerical calculations. A comparison of oil-lubricated and water-lubricated bearings shows that the latter benefits more from improved processing precision and efficiency. An analysis of the stiffness and friction power results shows that 6-cavity bearings are the preferred type, due their greater stiffness and lower friction power. The average elevated temperature was calculated and found to be satisfactory. The relevant parameters of the porous restrictor were determined by calculating the restriction rate. All these results indicate that this design for a water-lubricated bearing meets specifications for high speed and high accuracy.

Numerical investigation of two-phase natural convection and temperature stratification phenomena in a rectangular enclosure with conjugate heat transfer

  • Grazevicius, Audrius;Kaliatka, Algirdas;Uspuras, Eugenijus
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • Natural convection and thermal stratification phenomena are found in large water pools that are being used as heat sinks for decay heat removal from the reactor core using passive heat removal systems. In this study, the two-phase (water and air) natural convection and thermal stratification phenomena with conjugate heat transfer in the rectangular enclosure were investigated numerically using ANSYS Fluent 17.2 code. The transient numerical simulations of these phenomena in the full-scale computational domain of the experimental facility were performed. Generation of water vapour bubbles around the heater rod and evaporation phenomena were included in this numerical investigation. The results of numerical simulations are in good agreement with experimental measurements. This shows that the natural convection is formed in region above the heater rod and the water is thermally stratified in the region below the heater rod. The heat from higher region and from the heater rod is transferred to the lower region via conduction. The thermal stratification disappears and the water becomes well mixed, only after the water temperature reaches the saturation temperature and boiling starts. The developed modelling approach and obtained results provide guidelines for numerical investigations of thermal-hydraulic processes in the water pools for passive residual heat removal systems or spent nuclear fuel pools considering the concreate walls of the pool and main room above the pool.

Experimental and numerical investigation on the thickness effect of concrete specimens in a new tensile testing apparatus

  • Lei Zhou;Hadi Haeri;Vahab Sarfarazi;Mohammad Fatehi Marji;A.A. Naderi;Mohammadreza Hassannezhad Vayani
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.71-84
    • /
    • 2023
  • In this paper, the effects of the thickness of cubic samples on the tensile strength of concrete blocks were studied using experimental tests in the laboratory and numerical simulation by the particle flow code in three dimensions (PFC3D). Firstly, the physical concrete blocks with dimensions of 150 mm×190 mm (width×height) were prepared. Then, three specimens for each of seven different samples with various thicknesses were built in the laboratory. Simultaneously with the experimental tests, their numerical simulations were performed with PFC3D models. The widths, heights, and thicknesses of the numerical models were the same as those of the experimental samples. These samples were tested with a new tensile testing apparatus. The loading rate was kept at 1 kg/sec during the testing operation. Based on these analyses, it is concluded that when the thickness was less than 5 cm, the tensile strength decreased by increasing the sample thickness. On the other hand, the tensile strength was nearly constant when the sample thickness was raised to more than 5 cm (which can be regarded as a threshold limit for the specimens' thickness). The numerical outputs were similar to the experimental results, demonstrating the validity of the present analyses.

Model test and numerical simulation on the bearing mechanism of tunnel-type anchorage

  • Li, Yujie;Luo, Rong;Zhang, Qihua;Xiao, Guoqiang;Zhou, Liming;Zhang, Yuting
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.139-160
    • /
    • 2017
  • The bearing mechanism of tunnel-type anchorage (TTA) for suspension bridges is studied. Model tests are conducted using different shapes of plug bodies, which are circular column shape and circular truncated cone shape. The results show that the plug body of the latter shape possesses much larger bearing capacity, namely 4.48 times at elastic deformation stage and 4.54 times at failure stage compared to the former shape. Numerical simulation is then conducted to understand the mechanical and structural responses of plug body and surrounding rock mass. The mechanical parameters of the surrounding rock mass are firstly back-analyzed based on the monitoring data. The calculation laws of deformation and equivalent plastic strain show that the numerical simulation results are rational and provide subsequent mechanism analysis with an established basis. Afterwards, the bearing mechanism of TTA is studied. It is concluded that the plug body of circular truncated cone shape is able to take advantage of the material strength of the surrounding rock mass, which greatly enhances its bearing capacity. The ultimate bearing capacity of TTA, therefore, is concluded to be determined by the material strength of surrounding rock mass. Finally, recommendations for TTA design are proposed and discussed.

Crack propagation and deviation in bi-materials under thermo-mechanical loading

  • Chama, Mourad;Boutabout, Benali;Lousdad, Abdelkader;Bensmain, Wafa;Bouiadjra, Bel Abbes Bachir
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.441-457
    • /
    • 2014
  • This paper presents a finite element based numerical model to solve two dimensional bi-material problems. A bi-material beam consisting of two phase materials ceramic and metal is modelled by finite element method. The beam is subjected simultaneously to mechanical and thermal loadings. The main objective of this study is the analysis of crack deviation located in the brittle material near the interface. The effect of temperature gradient, the residual stresses and applied loads on crack initiation, propagation and deviation are examined and highlighted.

Forecasting solute breakthrough curves through the unsaturated zone using artificial neural network

  • Yoon Hee-Sung;Hyun Yun-Jung;Lee Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.348-351
    • /
    • 2005
  • In this study, solute breakthrough curves through the unsaturated zone were predicted using artificial neural network (ANN) by numerical tests and laboratory experiments. In the numerical tests, applicability of ANN model to prediction of breakthrough curves was evaluated using synthetic data generated by HYDRUS-2D. An appropriate strategy of ANN application and input data form were recommended. The ANN model was validated by laboratory experiments comparing with HYDRUS-2D simulations. The results show that the ANN model can be an effective method for forecasting solute breakthrough curves through the unsaturated zone when hydraulic data are available.

  • PDF

Numerical and experimental study of cone-headed projectile entering water vertically based on MMALE method

  • Cao, Miaomiao;Shao, Zhiyu;Wu, Siyu;Dong, Chaochao;Yang, Xiaotian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.877-888
    • /
    • 2021
  • The water entry behaviors of projectiles with different cone-headed angles were studied numerically, experimentally and theoretically, mainly focusing on the hydrodynamic impact in the initial stage. Based on MMALE algorithm, it was proposed a formula of impact deceleration, which relied on the initial entry velocity and cone-headed angle. Meanwhile, in order to verify the validity of the simulation model, experiments using accelerometer and high-speed camera were carried out, and their results were in a good agreement with simulation results. Also, theoretical calculation results of cavity diameter were compared with experiments and simulation results. It was observed that the simulation method had a good reliability, which would make forecast on impact deceleration in an engineering project.

Behavior of Gaseous Volatile Organic Compounds Considered by Density-Dependent Gas Advection (밀도차에 의해 발생하는 이송을 고려한 휘발성 유기화합물 가스의 거동)

  • 이창수;이영화
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1321-1326
    • /
    • 2002
  • A numerical model is investigated to predict a behavior of the gaseous volatile organic compounds and a subsurface contamination caused by them in the unsaturated zone. Two dimensional advective-dispersion equation caused by a density difference and two dimensional diffusion equation are computed by a finite difference method in the numerical model. A laboratory experiment is also carried out to compare the results of the numerical model. The dimensions of the experimental plume are 1.2m in length, 0.5m in height, and 0.05m in thickness. In comparing the result of 2 methods used in the numerical model with the one of the experiment respectively, the one of the advective-dispersion equation shows better than the one the diffusion equation.

Numerical simulation of flow past 2D hill and valley

  • Chung, Jaeyong;Bienkiewicz, Bogusz
    • Wind and Structures
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • Numerical simulation of flow past two-dimensional hill and valley is presented. Application of three turbulence models - the standard and modified (Kato-Launder) $k-{\varepsilon}$ models and standard $k-{\omega}$ model - is discussed. The computational methodology is briefly described. The mean velocity and turbulence intensity profiles, obtained from numerical simulations of flow past the hill, are compared with the experimental data acquired in a boundary-layer wind tunnel at Colorado State University. The mean velocity, turbulence kinetic energy and Reynolds shear stress profiles from numerical simulations of flow past the valley are compared with published experimental data. Overall, the results of simulations employing the standard $k-{\varepsilon}$ model were found to be in a better agreement with the experimental data than those obtained using the modified $k-{\varepsilon}$ model and the $k-{\omega}$ model.

Study on the Numerical Analysis of Model Ground with SCP (SCP가 타설된 모형지반의 압밀거동에 관한 수치해석적 연구)

  • Hwang, Sung-Pil;Im, Jong-Chul;Kang, Yeoun-Ike;Kwon, Jeong-Geun;Joo, In-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1224-1231
    • /
    • 2009
  • 1D Analysis have been using Design of SCP in order to improve the soft ground. But 2D Analysis is researching and developing to get more accurate results. Using 2D Analysis, suitable Numerical Analysis Model should be selected and be tested in many situations. In this study, Laboratory Model Tests are analyzed by Numerical Analysis Method. After selecting Numerical Analysis Model, it is being tested many conditions.

  • PDF