• Title/Summary/Keyword: Numerical laboratory

Search Result 2,147, Processing Time 0.024 seconds

A Study on the Distinct Element Modelling of Jointed Rock Masses Considering Geometrical and Mechanical Properties of Joints (절리의 기하학적 특성과 역학적 특성을 고려한 절리암반의 개별요소모델링에 관한 연구)

  • Jang, Seok-Bu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.35-81
    • /
    • 1998
  • Distinct Element Method(DEM) has a great advantage to model the discontinuous behaviour of jointed rock masses such as rotation, sliding, and separation of rock blocks. Geometrical data of joints by a field monitoring is not enough to model the jointed rock mass though the results of DE analysis for the jointed rock mass is most sensitive to the distributional properties of joints. Also, it is important to use a properly joint law in evaluating the stability of a jointed rock mass because the joint is considered as the contact between blocks in DEM. In this study, a stochastic modelling technique is developed and the dilatant rock joint is numerically modelled in order to consider th geometrical and mechanical properties of joints in DE analysis. The stochastic modelling technique provides a assemblage of rock blocks by reproducing the joint distribution from insufficient joint data. Numerical Modelling of joint dilatancy in a edge-edge contact of DEM enable to consider not only mechanical properties but also various boundary conditions of joint. Preprocess Procedure for a stochastic DE model is composed of a statistical process of raw data of joints, a joint generation, and a block boundary generation. This stochastic DE model is used to analyze the effect of deviations of geometrical joint parameters on .the behaviour of jointed rock masses. This modelling method may be one tool for the consistency of DE analysis because it keeps the objectivity of the numerical model. In the joint constitutive law with a dilatancy, the normal and shear behaviour of a joint are fully coupled due to dilatation. It is easy to quantify the input Parameters used in the joint law from laboratory tests. The boundary effect on the behaviour of a joint is verified from shear tests under CNL and CNS using the numerical model of a single joint. The numerical model developed is applied to jointed rock masses to evaluate the effect of joint dilation on tunnel stability.

  • PDF

One-Dimensional Consolidation Simulation of Kaolinte using Geotechnical Online Testing Method (온라인 실험을 이용한 카올리나이트 점토의 일차원 압밀 시뮬레이션)

  • Kwon, Youngcheul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.247-254
    • /
    • 2006
  • Online testing method is one of the numerical experiment methods using experimental information for a numerical analysis directly. The method has an advantage in that analysis can be conducted without using an idealized mechanical model, because mechanical properties are updated from element test for a numerical analysis in real time. The online testing method has mainly been used for the geotechnical seismic engineering, whose major target is sand. A testing method that may be applied to a consolidation problem has recently been developed and laboratory and field verifications have been tried. Although related research thus far has mainly used a method to update average reaction for a numerical analysis by positioning an element tests at the center of a consolidation layer, a weakness that accuracy of the analysis can be impaired as the thickness of the consolidation layer becomes more thicker has been pointed out regarding the method. To clarify the effectiveness and possible analysis scope of the online testing method in relation to the consolidation problem, we need to review the results by applying experiment conditions that may completely exclude such a factor. This research reviewed the results of the online consolidation test in terms of reproduction of the consolidation settlement and the dissipation of excess pore water pressure of a clay specimen by comparing the results of an online consolidation test and a separated-type consolidation test carried out under the same conditions. As a result, the online consolidation test reproduced the change of compressibility according effective stress of clay without a huge contradiction. In terms of the dissipation rate of excess pore water pressure, however, the online consolidation test was a little faster. In conclusion, experiment procedure needs to improve in a direction that hydraulic conductivity can be updated in real time so as to more precisely predict the dissipation of excess pore water pressure. Further research or improvement should be carried out with regard to the consolidation settlement after the end of the dissipation of excess pore water pressure.

Stability of a Natural Slope in Sedimentary Rocks (퇴적암 지역의 자연사면 안정성)

  • 권오일;김교원;박덕근
    • The Journal of Engineering Geology
    • /
    • v.10 no.3
    • /
    • pp.205-216
    • /
    • 2000
  • An unstable natural slope located at Icheon-Ri, Dasa-Eup, Dalseong-Kun which has been severely cracked during heavy rain fall in September, 1998, was investigated and analysed for remedial measures. Various geological data were obtained by performing a surface geological survey, a ground penetrating radar(GPR) exploration, four geotechnical borings with field and laboratory tests, and the precipitation records were also reviewed. Based on the these data, the probable sliding plane was determined as a bedding plane with dip angle of 20 to 25 degrees between sandstone and shale layers at depth of 6 to 8 meters. By performing back analyses with the limit equilibrium method, the friction angle and cohesion of the sliding plane were determined as 18$^{\circ}$ and 0, respectively. Based on these results, a series of stability analyses such as stereo-graphic projection method, limiting equilibrium method and numerical method were carried out. The remedial measures for the unstable slope were selected based on the results of the limit equilibrium analyses by considering various conditions expected at the site. Ground grouting or anchoring method with proper surface drainage systems could be employed for the long term safety of the slope.

  • PDF

Post-buckling responses of elastoplastic FGM beams on nonlinear elastic foundation

  • Trinh, Thanh-Huong;Nguyen, Dinh-Kien;Gan, Buntara S.;Alexandrov, S.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.515-532
    • /
    • 2016
  • The elastoplastic response of functionally graded material (FGM) beams resting on a nonlinear elastic foundation to an eccentric axial load is investigated by using the finite element method. The FGM is assumed to be formed from ceramic and metal phases with their volume fraction vary in the thickness direction by a power-law function. A bilinear elastoplastic behavior is assumed for the metallic phase, and the effective elastoplastic properties of the FGM are evaluated by Tamura-Tomota-Ozawa (TTO) model. Based on the classical beam theory, a nonlinear finite beam element taking the shift in the neutral axis position into account is formulated and employed in the investigation. An incremental-iterative procedure in combination with the arc-length control method is employed in computing the equilibrium paths of the beams. The validation of the formulated element is confirmed by comparing the equilibrium paths obtained by using the present element and the one available in the literature. The numerical results show that the elastoplastic post-buckling of the FGM beams is unstable, and the post-buckling strength is higher for the beams associated with a higher ceramic content. Different from homogeneous beams, yielding in the FGM beam occurs in the layer near the ceramic layer before in the layer near metal surface. A parametric study is carried out to highlight the effect of the material distribution, foundation support and eccentric ratio on the elastoplastic response of the beams.

Optimization of aircraft fuel consumption and reduction of pollutant emissions: Environmental impact assessment

  • Khardi, Salah
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.311-330
    • /
    • 2014
  • Environmental impact of aircraft emissions can be addressed in two ways. Air quality impact occurs during landings and takeoffs while in-flight impact during climbs and cruises influences climate change, ozone and UV-radiation. The aim of this paper is to investigate airports related local emissions and fuel consumption (FC). It gives flight path optimization model linked to a dispersion model as well as numerical methods. Operational factors are considered and the cost function integrates objectives taking into account FC and induced pollutant concentrations. We have compared pollutants emitted and their reduction during LTO cycles, optimized flight path and with analysis by Dopelheuer. Pollutants appearing from incomplete and complete combustion processes have been discussed. Because of calculation difficulties, no assessment has been made for the soot, $H_2O$ and $PM_{2.5}$. In addition, because of the low reliability of models quantifying pollutant emissions of the APU, an empirical evaluation has been done. This is based on Benson's fuel flow method. A new model, giving FC and predicting the in-flight emissions, has been developed. It fits with the Boeing FC model. We confirm that FC can be reduced by 3% for takeoffs and 27% for landings. This contributes to analyze the intelligent fuel gauge computing the in-flight fuel flow. Further research is needed to define the role of $NO_x$ which is emitted during the combustion process derived from the ambient air, not the fuel. Models are needed for analyzing the effects of fleet composition and engine combinations on emission factors and fuel flow assessment.

Where is the coronal loop plasma located, within a flux rope or between flux ropes?

  • Lim, Daye;Choe, G.S.;Yi, Sibaek
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.66.3-67
    • /
    • 2015
  • Without scrutinizing reflection, the plasma comprising a coronal loop is usually regarded to reside within a flux rope. This picture seems to have been adopted from laboratory plasma pinches, in which a plasma of high density and pressure is confined in the vicinity of the flux rope axis by magnetic tension and magnetic pressure of the concave inward magnetic field. Such a configuration, in which the plasma pressure gradient and the field line curvature vector are almost parallel, however, is known to be vulnerable to ballooning instabilities (to which belong interchange instabilities as a subset). In coronal loops, however, ideal MHD (magnetohydrodynamic) ballooning instabilities are impeded by a very small field line curvature and the line-tying condition. We, therefore, focus on non-ideal (resistive) effects in this study. The footpoints of coronal loops are constantly under random motions of convective scales, which twist individual loop strands quite randomly. The loop strands with the axial current of the same direction tend to coalesce by magnetic reconnection. In this reconnection process, the plasma in the loop system is redistributed in such a way that a smaller potential energy of the system is attained. We have performed numerical MHD simulations to investigate the plasma redistribution in coalescence of many small flux ropes. Our results clearly show that the redistributed plasma is more accumulated between flux ropes rather than near the magnetic axes of flux ropes. The Joule heating, however, creates a different temperature distribution than the density distribution. Our study may give a hint of which part of magnetic field we are looking to in an observation.

  • PDF

Interface Behavior of Concrete Infilled Steel Tube Subjected to Flexure (휨을 받는 콘크리트 충전 강관의 계면거동)

  • Lee, Ta;Jeong, Jong-Hyun;Kim, Hyeng-Ju;Lee, Yong-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.9-17
    • /
    • 2015
  • Interface behavior of concrete-infilled steel tube (CFT) was investigated based on the experimental observations and numerical analyses. Laboratory tests were performed for twelve CFTs that consisted of two different cases of diameters where each diameter case was composed of three different cases of shear span length. Thereby, diameter and shear span parameters were considered to prove the question of whether there exists interface slip between steel tube and infilled-concrete. Confining effect of steel tube to infilled concrete was also investigated by measuring lateral strain as well as longitudinal strain. Based on the study, it was concluded that confining effect of steel tube to infilled-concrete is not influential under flexural loading and therefore, the sectional analysis is an effective way to estimate the flexural strength of CFT.

Numerical Analysis on the Performance Evaluation of Cablebolts as Tunnel Supports (터널 지보재로서 케이블볼트의 성능평가에 관한 수치해석적 연구)

  • Park, Yeon-Jun;Park, Joon-Hyoung
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.130-143
    • /
    • 2012
  • Cablebolts used to be employed as auxiliary supports where long or high capacity bolts are needed, but become competitive by the improvements in supportability and easiness in handling. Based on the test results obtained from various researches, the performance of the cablebolts was analyzed numerically while varying lengths and fixing conditions. The supporting effecte is assessed by monitoring displacements and stress taken place in shotcrete. When cablebolts are grouted without being tensioned, supporting effect was not as good as that of rockbolts. But, their supportability was good enough to substitute rockbolts if tensioned properly. Post grouting right after tensioning of the cablebolts shows reduction in supportability, but long term stability could be achieved without losing supportability if grouted when the bolt is far enough from the face. Further study is necessary including laboratory and in-situ tests under various conditions to use cablebolts as main support in tunnels.

Seismic vibration control of an innovative self-centering damper using confined SMA core

  • Qiu, Canxing;Gong, Zhaohui;Peng, Changle;Li, Han
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.241-254
    • /
    • 2020
  • Using confined shape memory alloy (SMA) bar or plate, this study proposes an innovative self-centering damper. The damper is essentially properly machined SMA core, i.e., bar or plate, that encased in buckling-restrained device. To prove the design concept, cyclic loading tests were carried out. According to the test results, the damper exhibited desired flag-shape hysteretic behaviors upon both tension and compression actions, although asymmetric behavior is noted. Based on the experimental data, the hysteretic parameters that interested by seismic applications, such as the strength, stiffness, equivalent damping ratio and recentering capacity, are quantified. Processed in the Matlab/Simulink environment, a preliminary evaluation of the seismic control effect for this damper was conducted. The proposed damper was placed at the first story of a multi-story frame and then the original and controlled structures were subjected to earthquake excitations. The numerical outcome indicated the damper is effective in controlling seismic deformation demands. Besides, a companion SMA damper which represents a popular type in previous studies is also introduced in the analysis to further reveal the seismic control characteristics of the newly proposed damper. In current case, it was found that although the current SMA damper shows asymmetric tension-compression behavior, it successfully contributes comparable seismic control effect as those having symmetrical cyclic behavior. Additionally, the proposed damper even shows better global performance in controlling acceleration demands. Thus, this paper reduces the concern of using SMA dampers with asymmetric cyclic behavior to a certain degree.

Behavior of tension lap spliced sustainable concrete flexural members

  • Al-Azzawi, Adel A.;Daud, Raid A.;Daud, Sultan A.
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.83-92
    • /
    • 2020
  • The use of spliced reinforcing bars in sustainable concrete members to manage inadequate bars length is a common practical issue which is may be due to some limitations. The lap splicing means two bars overlapped in parallel with specified length called the splice length in order to provide the required bond between the two bars. The bond between sustainable concrete and spliced steel bars is another important issue. The normal strength sustainable concrete specimens of sizes 1700×150×150 mm with tension reinforcement lap spliced were selected according to testing device length limitations. These members were designed to fail in flexure in order to investigate the lap spliced tension bars effect. The selected lap spliced tension bars were of 10 mm size with smooth and deformed surfaces in order to investigate the surface nature accompanied with the splice nature. The sustainable concrete mechanical properties and mix workability were also studied. This study reveals that the effect of number of spliced bars on the response of beams reinforced with smooth bars is found to be more obvious than deformed one. Finite element modeling in three dimensions was carried out for the tested beams using ABAQUS software. A parametric study is carried out using finite elements on considering the following parameters, concrete compressive strength, load type and opening in cross section (hollow section) for weight reduction purposes.The laboratory and numerical results show good agreements in terms of ultimate load and deflection with an average difference of 10% and 15% in ultimate load and deflection respectively.