• 제목/요약/키워드: Numerical instability

검색결과 729건 처리시간 0.027초

Dynamical behaviour of electrically actuated microcantilevers

  • Farokhi, Hamed;Ghayesh, Mergen H.
    • Coupled systems mechanics
    • /
    • 제4권3호
    • /
    • pp.251-262
    • /
    • 2015
  • The current paper aims at investigating the nonlinear dynamical behaviour of an electrically actuated microcantilever. The microcantilever is excited by a combination of AC and DC voltages. The nonlinear equation of motion of the microcantilever is obtained by means of force and moment balances. A high-dimensional Galerkin scheme is then applied to reduce the equation of motion to a discrete model. A numerical technique, based on the pseudo-arclength continuation method, is used to solve the discretized model. The electrostatic deflection of the microcantilever and static pull-in instabilities, due to the DC voltage, are analyzed by plotting the so-called DC voltage-deflection curves. At the simultaneous presence of the DC and AC voltages, the nonlinear dynamical behaviour of the microcantilever is analyzed by plotting frequency-response and force-response curves.

철근 콘크리트 보의 재료비선형 해석 (Material Nonlinear Analysis of RC Beams)

  • 곽효경;김지은
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.133-140
    • /
    • 1998
  • Material nonlinear analyses of RC(Reinforced Concrete) beams considering the tension stiffening effect and plastic hinge length have been conducted. Instead of taking the sophisticated layer approach which has some limitations in application to the large structures with many degrees of freedom. the moment-curvature relationships of RC sections previously constructed through the section analysis have been used. To reduce the numerical instability in nonlinear analysis and to remove the imprecision in calculation of ultimate resisting capacity, according to the used finite element mesh size, the tension stiffening effect and plastic hinge length have been taken into consideration. Finally, correlation studies between analytical and experimental results have been conducted with the objective to establish the validity of the proposed algorithms.

  • PDF

Kriging 보간법을 사용한 개선된 차원감소법 (Improving Dimension Reduction Method Using Kriging Interpolation)

  • 최주호;최창현
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.135-140
    • /
    • 2007
  • In this paper, an Improved Dimension Reduction(IDR) method is proposed for uncertainty quantification that employes Kriging interpolation technic. It has been acknowledged that the DR method is accurate and efficient for assessing statistical moments and reliability due to the sensitivity free feature. However, the DR method has a number of drawbacks such as instability and inaccuracy for problems with increased nonlineality. In this paper, improved DR is implanted by three steps. First, the Kriging interpolation method is used to accurately approximate the responses. Second, 2N+1 and 4N+1 ADOEs are proposed to maintain high accuracy of the method for UQ analysis. Third, numerical integration scheme is used with accurate but free response values at any set of integration points of the surrogated model.

  • PDF

Nonlinear Flexural Analysis of PSC Test Beams in CANDU Nuclear Power Plants

  • Bae, In-Hwan;Choi, In-Kil;Seo, Jeong-Moon
    • Nuclear Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.180-190
    • /
    • 2000
  • In this study, nonlinear analyses of prestressed concrete(PSC) test beams for inservice inspection of prestressed concrete containments for CANDU nuclear power plants are presented. In the analysis the material nonlinearities of concrete, rebar and prestressing steel are used. To reduce the numerical instability with respect to the used finite element mesh size, the tension stiffening effect has been considered. For concrete, the tensile stress-strain relationship derived from tests is modified and the stress-strain curve of rebar is assumed as a simple bilinear model. The stress-strain curve of prestressing steel is applied as a multilineal curve with the first straight line up to 0.8fpu. To prove the validity of the applied material models, the behavior and strength of the PSC test specimens tested to failure have been evaluated. A reasonable agreement between the experimental results and the predictions is obtained. Parametric studies on the tension stiffening effects, the impact of prestressing losses with time, and the compressive strength of concrete have been conducted.

  • PDF

An Interior Point Method based Reactive Optimal Power Flow Incorporating Margin Enhancement Constraints

  • Song Hwa-Chang;Lee Byong-Jun;Moon Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권2호
    • /
    • pp.152-158
    • /
    • 2005
  • This paper describes a reactive optimal power flow incorporating margin enhancement constraints. Margin sensitivity at a steady-state voltage instability point is calculated using invariant space parametric sensitivity, and it can provide valuable information for selection of effective control parameters. However, the weakest buses in neighboring regions have high margin sensitivities within a certain range. Hence, the control determination using only the sensitivity information might cause violation of operational limits of the base operating point, at which the control is applied to enhance voltage stability margin in the direction of parameter increase. This paper applies an interior point method (IPM) to solve the optimal power flow formulation with the margin enhancement constraints, and shunt capacitances are mainly considered as control variables. In addition, nonlinearity of margin enhancement with respect to control of shunt capacitance is considered for speed-up control determination in the numerical example using the IEEE 118-bus test system.

Stabilization of Input-Delayed TS Fuzzy Systems

  • Lee, Ho-Jae;Park, Jin-Bae;Cha, Dae-Beum;Joo, Young-Hoon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.140-143
    • /
    • 2001
  • In this paper, a control problem of the Takagi-Sugeno(TS) fuzzy system with time-varying input delay is considered. It is well known that the delay is one of the major sources responsible for the instability of the controlled system. A systematic design technique is developed based on the Lyapunov-Razumikhin stability theorem. A sufficient condition for the global asymptotic stability of the TS fuzzy systems is formulated in terms of linear matrix inequalities (LMIs). The derived condition can deal with any time-varying input delay within the admissible bound. The effectiveness of the proposed controller design technique is demonstrated by a numerical simulation.

  • PDF

비점성 대류 방정식의 계산을 위한 Hermite 3차 요소의 사용에 대한 (The Use of Hermite Cubic Element for Inviscid Convective Equations)

  • 김진환
    • 한국해양공학회지
    • /
    • 제7권1호
    • /
    • pp.99-106
    • /
    • 1993
  • The use of Hermite cubic element, as a possible finite element computation of transport equations containing shocks, has been invesigated. In the present paper the hermite cubic elements are applied to both linear and nonlinear scalar one and two dimensional equations. In the one dimensional problems, numerical results by the hermite cubic element show better than those by the linear element, and the steady state solution by the hermite cubic element yields result with good resolution. This fact proves the superiority of the hermite cubic element in space differencing. In two dimensional case, the results by the hermite cubic element shows a boundary instability, and the use of higher order time differencing method may be necessary for fixing the problem.

  • PDF

MAGNETIC RECONNECTION IN MAGNETOPLASMA OF SOLAR FLARES

  • Shin, Jong-Yeob;Yun, Hong-Sik;Min, Kyoung-Wook
    • 천문학회지
    • /
    • 제23권1호
    • /
    • pp.15-29
    • /
    • 1990
  • The magnetic reconnection mechanism is a primary candidate for "flare" processes in solar coronal regions. Numerical simulations of two-dimensional magnetic reconnection are carried out for four different cases: (1) adiabatic condition with constant resistivity, (2) adiabatic condition with temperature-dependent resistivity, (3) energetics with radiation loss and constant resistivity and (4) energetics with radiation loss and temperature-dependent resistivity. It is found that the thermal instability prompts the magnetic reconnection process, thus increasing the conversion rate of magnetic energy into kinematic energy of the fluid. We demonstrated that the observed microflares can be accounted for by our magnetic reconnection models, when the effects of the radiation loss and the temperature-dependent resistivity are taken into account.

  • PDF

베이스 표면재결합상태의 불안정에 의한 GaAs HBT의 열화 (Degradation of GaAs HBT induced by instability of base surface recombination states)

  • 김덕영;최재훈;김도현;송정근
    • 전자공학회논문지D
    • /
    • 제35D권3호
    • /
    • pp.11-17
    • /
    • 1998
  • Although GaAs HBTs are very attractive for high power amplifier because of their power handling capablity, they can't be actively commercialized due to the degradation of current gain occured in hihg current operation. In this paper we analyzed the type of current gain degradation of GaAs HBTs under high constant current stress, and identified the mechanism by using two dimensional numerical simulation. The cause of degradation was found out to be the variation of surface recombination states at the interface between GaAs extrinstic base and the nitride passivating the surface of base. The energy radiated from recombination of carriers in bulk as well as near the surface is estimated to activate the change of the surface states.

  • PDF

초음속 주유동에 수직 분사되는 제트의 비정상 수치해석 (Unsteady Numerical Analysis of Transverse Injection Jet into Supersonic Mainstream)

  • 최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.126-131
    • /
    • 2003
  • A series of computational simulations have been carried out for supersonic flows in a scram jet engine with and without a cavity. Transverse injection of hydrogen, a simplest form of fuel supply, is considered in the present study with the injection pressure varying from 0.5 to 1.5 MPa. The corresponding equivalence ratios are 0.167 - 0.50. The work features detailed resolution of the flow dynamics in the combustor, which was not typically available in most of the Previous studies. In particular, oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flowfield. The interactions between shock waves and shear layer may cause a large excursion of flow oscillation. The role of the cavity and injection pressure are examined systematically.

  • PDF