• Title/Summary/Keyword: Numerical control

Search Result 4,752, Processing Time 0.03 seconds

NUMERICAL SIMULATION OF THE FRACTIONAL-ORDER CONTROL SYSTEM

  • Cai, X.;Liu, F.
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.229-241
    • /
    • 2007
  • Multi-term fractional differential equations have been used to simulate fractional-order control system. It has been demonstrated the necessity of the such controllers for the more efficient control of fractional-order dynamical system. In this paper, the multi-term fractional ordinary differential equations are transferred into equivalent a system of equations. The existence and uniqueness of the new system are proved. A fractional order difference approximation is constructed by a decoupled technique and fractional-order numerical techniques. The consistence, convergence and stability of the numerical approximation are proved. Finally, some numerical results are presented to demonstrate that the numerical approximation is a computationally efficient method. The new method can be applied to solve the fractional-order control system.

Computational Solution of a H-J-B equation arising from Stochastic Optimal Control Problem

  • Park, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.440-444
    • /
    • 1998
  • In this paper, we consider numerical solution of a H-J-B (Hamilton-Jacobi-Bellman) equation of elliptic type arising from the stochastic control problem. For the numerical solution of the equation, we take an approach involving contraction mapping and finite difference approximation. We choose the It(equation omitted) type stochastic differential equation as the dynamic system concerned. The numerical method of solution is validated computationally by using the constructed test case. Map of optimal controls is obtained through the numerical solution process of the equation. We also show how the method applies by taking a simple example of nonlinear spacecraft control.

  • PDF

Wind vibration control of stay cables using an evolutionary algorithm

  • Chen, Tim;Huang, Yu-Ching;Xu, Zhao-Wang;Chen, J.C.Y.
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.71-80
    • /
    • 2021
  • In steel cable bridges, the use of magnetorheological (MR) dampers between butt cables is constantly increasing to dampen vibrations caused by rain and wind. The biggest problem in the actual applications of those devices is to launch a kind of appropriate algorithm that can effectively and efficiently suppress the perturbation of the tie through basic calculations and optimal solutions. This article discusses the optimal evolutionary design based on a linear and quadratic regulator (hereafter LQR) to lessen the perturbation of the bridges with cables. The control numerical algorithms are expected to effectively and efficiently decrease the possible risks of the structural response in amplification owing to the feedback force in the direction of the MR attenuator. In addition, these numerical algorithms approximate those optimal linear quadratic regulator control forces through the corresponding damping and stiffness, which significantly lessens the work of calculating the significant and optimal control forces. Therefore, it has been shown that it plays an important and significant role in the practical application design of semiactive MR control power systems. In the present proposed novel evolutionary parallel distributed compensator scheme, the vibrational control problem with a simulated demonstration is used to evaluate the numerical algorithmic performance and effectiveness. The results show that these semiactive MR control numerical algorithms which are present proposed in the present paper has better performance than the optimal and the passive control, which is almost reaching the levels of linear quadratic regulator controls with minimal feedback requirements.

-A Study on the DNC System with the Function of Process Monitoring and Control- (공정관리 기능을 강화한 DNC 시스템 구현에 관한 연구)

  • 김채수;심문보
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.2
    • /
    • pp.87-98
    • /
    • 2003
  • With the development of CNC(Computer Numerical Control) and communication technology, the connotation and functions of Distributed Numerical Control have been greatly enlarged. In this study, we develop and implement a Distributed Numerical Control system that has real time and multi-tasking operation capability for the machining cell with various NC(Numerical Control) and CNC machines. With the consideration of economy, generalization and extension, this system is interfaced with Shop Floor Control System, Machine Control System and Tool Preparation System using advanced networking method. In the implementation phase, we use the ORACLE DBMS (Database Management System) as the DBMS and Microsoft Visual C++ as the programming tools.

Energy constraint control in numerical simulation of constrained dynamic system

  • 윤석준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.376-382
    • /
    • 1991
  • In the analysis of constrained holonomic systems, the Lagange multiplier method yields a system of second-order ordinary differential equations of motion and algebraic constraint equations. Conventional holonomic or nonholonomic constraints are defined as geometric constraints in this paper. Previous works concentrate on the geometric constraints. However, if the total energy of a dynamic system can be computed from the initial energy plus the time integral of the energy input rate due to external or internal forces, then the total energy can be artificially treated as a constraint. The violation of the total energy constraint due to numerical errors can be used as information to control these errors. It is a necessary condition for accurate simulation that both geometric and energy constraints be satisfied. When geometric constraint control is combined with energy constraint control, numerical simulation of a constrained dynamic system becomes more accurate. A new convenient and effective method to implement energy constraint control in numerical simulation is developed based on the geometric interpretation of the relation between constraints in the phase space. Several combinations of energy constraint control with either Baumgarte's Constraint Violation Stabilization Method (CVSM) are also addressed.

  • PDF

Development of a Ddistributed Numerical Control System (DNC 시스템 개발)

  • Kim, S.H.;S.W.;S.B.;J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.19-29
    • /
    • 1995
  • The basic technology for a production system represented by design, machining, assembly, and inspection, is machining technology such as CNC machine tools. etc. Direct Numerical Control, that effeciently manages NC programs is developing into Distributed Numerical Control that increases the utilization of the machining cell. It has the ability of monitoring and control, in real time, for CNC and periperial equipment. In this study, we develop a Distributed Numerical Control system that has real time and multitasking operation capability for the machining cell with various CNC's. With the consideration of economy, generalization and extension, the system is interfaced with CNC machine tools and periperial device using RS-485 network and RS-232C communication methods.

  • PDF

THEORETICAL STUDIES ON FRICTION DRAG REDUCTION CONTROL WITH THE AID OF DIRECT NUMERICAL SIMULATION - A REVIEW

  • Fukagata, Koji
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.96-106
    • /
    • 2008
  • We review a series of studies on turbulent skin friction drag reduction in wall-turbulence recently conducted in Japan. First, an identity equation relating the skin friction drag and the Reynolds shearstress (the FIK identity) is introduced. Based on the implication of the FIK identity, a new analytical suboptimal feedback control law requiring the streamwise wall-shear stress only is introduced and direct numerical simulation (DNS) results of turbulent pipe flow with that control is reported. We also introduce DNS of an anisotropic compliant surface and parameter optimization using an evolutionary optimization technique.

Stability of Time Delay Systems Using Numerical Computation of Argument Principles

  • Suh, Young-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.127-133
    • /
    • 2003
  • This paper proposes a new numerical method to check the stability of a general class of time delay systems. The proposed method checks whether there are characteristic roots whose real values are nonnegative through two steps. Firstly, rectangular bounds of characteristic roots whose real values are nonnegative are computed. Secondly, the existence of roots inside the bounds are checked using the numerical computation of argument principles. An adaptive discretization is proposed for the numerical computation of argument principles.

A Study on Data Remote Control of DNC Network (DNC Network을 통한 Data Remote Control에 관한 연구)

  • 박영식;김기혁;오창주
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.395-400
    • /
    • 1999
  • At present, some evolutional system has been used to promote the efficiency of the DNC(Direct Numerical Control) Controller. However, these are many inconvenience to this operator because it lacks harmony in interaction between the computer and the NC(Numerical Control). Also, there are some controversial poults when data error occurs at the Data Input/output. According1y, this thesis explores a new Data Remote Control System. In this study, the NC Controller of the DNC network has to Bet full data by removing data error in this system. In this system, the main merits are easy manufacturing and the convenience of Data Input/output. That is, remote control of the NC machine tool is possible without mutual interaction between the computer and itself.

  • PDF

Development of Control Algorithm and Real Time Numerical Simulation Program for Adaptive Cruise Control Vehicles (적응순향 제어(ACC) 차량의 제어 알고리즘 및 실시간 수치실험 프로그램 개발)

  • 원문철;강연준;강병배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.202-213
    • /
    • 1999
  • Adaptive Cruise Control (ACC) is one of key features on intelligent Transportation System(ITS). In ACC, the steering is done by a driver, but the engine throttle valve and the brake are controlled electronically. The relative velocity and distance from the preceeding vehicle are measured by radars or image processing units and relevant vehicular spacing is maintained in ACC control systems. In this study, vehicle longitudinal dynamics are modeled to simulate vehicle longitudinal maneuver and to design longtitudinal controllers for ACC vehicles. The control algorithm is designed based on the modeled vehicle longitudinal dynamics using a non-linear sliding mode control method. To verity the performance of the control algorithm, a real time numerical simulation program is developed on a Silicon Graphics workstation using C-language . A real time graphic program is alos develpe and integrated with the numerical simulation program.

  • PDF