• Title/Summary/Keyword: Numerical analysis (DEM)

Search Result 110, Processing Time 0.026 seconds

Runoff Analysis of Urban Watershed using MIKE SWMM Model (MIKE SWMM 모형을 이용한 도시유역 유출분석에 관한 연구)

  • Kim, Jong-Suk;Ahn, Jae-Hyun;Oh, Tae-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.11
    • /
    • pp.907-916
    • /
    • 2005
  • For an urban watershed modeling, the ILLVDAS and SWMM model were the popular rainfall-runoff models using in Korea. However, combined sewerage systems in urban area produce some problems when a flood event happens because of the surcharged precipitation amounts which drain to streams directly. Also, rack of pipe line data and difficulties of modeling yield inappropriate modeling results in urban runoff analysis. In addition, rainfall-runoff models in an urban which using channel routing could be inaccurate and complicated processes. In this paper, the MIKE SWMM model has been applied for a stable urban area runoff analysis. Watershed and pipe line data were established by using past inundated records, DEM data and numerical pipe line data. For a runoff modeling, the Runoff block was adapted to a basin and the Extran block using dynamic equation was applied for sewerage system. After a comparisons against existing models yield that the MIKE SWMM model produce reliable and consistence results without distorting parameter of the model.

A Study on the Ultimate Point Resistance of Rock Socketed Drilled Shafts Using FLAC3D and UDEC (유한차분해석과 개별요소해석을 이용한 암반에 근입된 현장타설말뚝의 선단지지력 연구)

  • Lee, Jae-Hwan;Cho, Hoo-Yeon;You, Kwang-Ho;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.1
    • /
    • pp.29-39
    • /
    • 2012
  • The maximum unit point resistance ($q_{max}$) of rock socketed drilled shafts subjected to axial loads was investigated by a numerical analysis. A 3D Finite Difference Method (FDM) analysis and a Distinct Element Method (DEM) analysis were performed with varying rock elastic modulus (E), discontinuity spacing ($S_j$), discontinuity dip angle ($i_j$), and pile diameter (D). Based on the results of obtained, it was found that the ultimate point resistance ($q_{max}$) increased as rock elastic modulus (E) and rock discontinuity spacing ($S_j$) increased. But, it was found that $q_{max}$ decreased as pile diameter (D) increased. As for the influence of the dip angle of rock discontinuity ($i_j$), it was shown that $q_{max}$ decreased up to 50% of maximum value within the range of $0^{\circ}$ < $i_j$ < $60^{\circ}$ due to the shear failure at rock discontinuities. Furthermore, it was found that if $20^{\circ}{\leq}i_j{\leq}40^{\circ}$, influence of $i_j$ should be taken into account because $q_{max}$ tended to approach a minimum value as $i_j$ approached a value near the friction angle of the discontinuity (${\phi}_j$).

The Contact and Parallel Analysis of SPH Using Cartesian Coordinate Based Domain Decomposition Method (Cartesian 좌표기반 동적영역분할을 고려한 SPH의 충돌 및 병렬해석)

  • Moonho Tak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.13-20
    • /
    • 2024
  • In this paper, a parallel analysis algorithm for Smoothed Particle Hydrodynamics (SPH), one of the numerical methods for fluidic materials, is introduced. SPH, which is a meshless method, can represent the behavior of a continuum using a particle-based approach, but it demands substantial computational resources. Therefore, parallel analysis algorithms are essential for SPH simulations. The domain decomposition algorithm, which divides the computational domain into partitions to be independently analyzed, is the most representative method among parallel analysis algorithms. In Discrete Element Method (DEM) and Molecular Dynamics (MD), the Cartesian coordinate-based domain decomposition method is popularly used because it offers advantages in quickly and conveniently accessing particle positions. However, in SPH, it is important to share particle information among partitioned domains because SPH particles are defined based on information from nearby particles within the smoothing length. Additionally, maintaining CPU load balance is crucial. In this study, a highly parallel efficient algorithm is proposed to dynamically minimize the size of orthogonal domain partitions to prevent excess CPU utilization. The efficiency of the proposed method was validated through numerical analysis models. The parallel efficiency of the proposed method is evaluated for up to 30 CPUs for fluidic models, achieving 90% parallel efficiency for up to 28 physical cores.

Fast Analysis of Rock Block Behavior on Underground Opening considering Geostatic Stress Conditions (지체응력조건을 고려한 지하공동 주변부 암석블록의 신속한 거동 안정성 분석)

  • Kang, Il-Seok;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.64-74
    • /
    • 2019
  • Behavior of a rock block consisting of rock joints during excavation of an underground opening is an important factor for the mechanical stability of the opening. In this study, the behavior of a rock block under different geostatic stress and joint property conditions was analyzed quantitatively. The behavior of the rock block analyzed by 3DEC numerical analysis was compared with that of the theoretical calculation, and the error between the theoretical value and the numerical analysis result was analyzed under various geostatic stress and joint property conditions. The result of the stability analysis of a rock block showed less than 5% of error with numerical simulation result, which verified the applicability of the purposed analytic solution.

Simulation analysis and evaluation of decontamination effect of different abrasive jet process parameters on radioactively contaminated metal

  • Lin Zhong;Jian Deng;Zhe-wen Zuo;Can-yu Huang;Bo Chen;Lin Lei;Ze-yong Lei;Jie-heng Lei;Mu Zhao;Yun-fei Hua
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3940-3955
    • /
    • 2023
  • A new method of numerical simulating prediction and decontamination effect evaluation for abrasive jet decontamination to radioactively contaminated metal is proposed. Based on the Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) coupled simulation model, the motion patterns and distribution of abrasives can be predicted, and the decontamination effect can be evaluated by image processing and recognition technology. The impact of three key parameters (impact distance, inlet pressure, abrasive mass flow rate) on the decontamination effect is revealed. Moreover, here are experiments of reliability verification to decontamination effect and numerical simulation methods that has been conducted. The results show that: 60Co and other homogeneous solid solution radioactive pollutants can be removed by abrasive jet, and the average removal rate of Co exceeds 80%. It is reliable for the proposed numerical simulation and evaluation method because of the well goodness of fit between predicted value and actual values: The predicted values and actual values of the abrasive distribution diameter are Ф57 and Ф55; the total coverage rate is 26.42% and 23.50%; the average impact velocity is 81.73 m/s and 78.00 m/s. Further analysis shows that the impact distance has a significant impact on the distribution of abrasive particles on the target surface, the coverage rate of the core area increases at first, and then decreases with the increase of the impact distance of the nozzle, which reach a maximum of 14.44% at 300 mm. It is recommended to set the impact distance around 300 mm, because at this time the core area coverage of the abrasive is the largest and the impact velocity is stable at the highest speed of 81.94 m/s. The impact of the nozzle inlet pressure on the decontamination effect mainly affects the impact kinetic energy of the abrasive and has little impact on the distribution. The greater the inlet pressure, the greater the impact kinetic energy, and the stronger the decontamination ability of the abrasive. But in return, the energy consumption is higher, too. For the decontamination of radioactively contaminated metals, it is recommended to set the inlet pressure of the nozzle at around 0.6 MPa. Because most of the Co elements can be removed under this pressure. Increasing the mass and flow of abrasives appropriately can enhance the decontamination effectiveness. The total mass of abrasives per unit decontamination area is suggested to be 50 g because the core area coverage rate of the abrasive is relatively large under this condition; and the nozzle wear extent is acceptable.

Umyeon Mountain Debris Flow Movement Analysis Using Random Walk Model (Random Walk Model을 활용한 우면산 토석류 거동 분석)

  • Kim, Gihong;Won, Sangyeon;Mo, Sehwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.515-525
    • /
    • 2014
  • Recently, because of increasing in downpour and typhoon, which are caused by climate changes, those sedimentation disasters, such as landslide and debris flow, have become frequent. Those sedimentation disasters take place in natural slope. In order to predict debris flow damage range within wide area, the response model is more appropriate than numerical analysis. However, to make a prediction using Random Walk Model, the regional parameters is needed to be decided, since the regional environments conditions are not always same. This random Walk Model is a probability model with easy calculation method, and simplified slope factor. The objective of this study is to calculate the optimal parameters of Random Walk Model for Umyeon mountain in Seoul, where the large debris flow has occurred in 2011. Debris flow initiation zones and sedimentation zones were extracted through field survey, aerial photograph and visual reading of debris flow before and after its occurrence via LiDAR DEM.

A Study on the Distinct Element Modelling of Jointed Rock Masses Considering Geometrical and Mechanical Properties of Joints (절리의 기하학적 특성과 역학적 특성을 고려한 절리암반의 개별요소모델링에 관한 연구)

  • Jang, Seok-Bu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.35-81
    • /
    • 1998
  • Distinct Element Method(DEM) has a great advantage to model the discontinuous behaviour of jointed rock masses such as rotation, sliding, and separation of rock blocks. Geometrical data of joints by a field monitoring is not enough to model the jointed rock mass though the results of DE analysis for the jointed rock mass is most sensitive to the distributional properties of joints. Also, it is important to use a properly joint law in evaluating the stability of a jointed rock mass because the joint is considered as the contact between blocks in DEM. In this study, a stochastic modelling technique is developed and the dilatant rock joint is numerically modelled in order to consider th geometrical and mechanical properties of joints in DE analysis. The stochastic modelling technique provides a assemblage of rock blocks by reproducing the joint distribution from insufficient joint data. Numerical Modelling of joint dilatancy in a edge-edge contact of DEM enable to consider not only mechanical properties but also various boundary conditions of joint. Preprocess Procedure for a stochastic DE model is composed of a statistical process of raw data of joints, a joint generation, and a block boundary generation. This stochastic DE model is used to analyze the effect of deviations of geometrical joint parameters on .the behaviour of jointed rock masses. This modelling method may be one tool for the consistency of DE analysis because it keeps the objectivity of the numerical model. In the joint constitutive law with a dilatancy, the normal and shear behaviour of a joint are fully coupled due to dilatation. It is easy to quantify the input Parameters used in the joint law from laboratory tests. The boundary effect on the behaviour of a joint is verified from shear tests under CNL and CNS using the numerical model of a single joint. The numerical model developed is applied to jointed rock masses to evaluate the effect of joint dilation on tunnel stability.

  • PDF

DEM analysis of the anisotropy effects on the failure mechanism of the layered concretes' specimens with internal notches

  • Jinwei Fu;Vahab Sarfarazi;Hadi Haeri;Mohammad Fatehi Marji
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.659-670
    • /
    • 2024
  • The mechanical behaviour of layered concrete samples containing an internal crack was numerically studied by modelling the geo-mechanical specimens in the particle flow code in two dimensions (PFC2D). The numerical modelling software was calibrated with the experimental results of the Brazilian tensile strengths gained from the laboratory disc-type specimens. Then, the samples with the bedding layers and internal notch were numerically simulated with PFC2D under uniaxial compressive loading. In each specimen, the layers' thickness was 10 mm but the layer's inclination angle was changed to 0°, 30°, 60°, 90°, 120° and 150°. Of course, the layers'interfaces are considered to have very low strengths. The internal notch was kept at 3 cm in length however, its inclination angle was changed to 0°, 40°, 60° and 90°. Therefore, a total, of 24 numerical models were made to study the failure mechanism of the layered concrete samples. Considering these results, it has been concluded that the inclination angles of both internal crack and bedding layers affect the failure mechanism and uniaxial compressive strength of the concrete.

Analysis of Deformation Behavior of Underground Caverns in a Discontinuous Rock Mass Using the Distinct Element Method (개별요소법을 이용한 불연속 암반내 지하공동의 변형 거동 해석)

  • Jung, Wan-Kyo;Lim, Han-Uk
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.69-81
    • /
    • 2003
  • Numerical analysis is important for the design, construction and maintenance of large caverns. The rock mass contains generally discontinuities such as faults, joints and fissures. The mechanical behavior and geometric characteristics of these discontinuities would have a significant impact on the stability of the caverns. In this research the Distinct Element Method(DEM) was used to analyze the structural stability of the large cavern. The Barton-Bandis Joint Model (B-B J.M) was used as a constitutive model for the joint. In addition, two different cases 1) analysis with a support system and 2) analysis with no support system, were analyzed to optimize a support system and to investigate reinforcing effects of a support system. The most significant parameters of in-situ stress, JRC of in-situ natural joints, and spatial distribution characteristics of discontinuities were acquired through field investigation. Displacement (horizontal, joint shear), maximum joint opening, maximum and minimum principal stresses, range of relaxed zone, rockbolt axial forces and shotcrete stresses were calculated at each excavation stage. As a result of analysis the calculated values proved to be under the allowable value Rockbolts also proved to be an efficient support measure to control joint shear displacement which had significant effects on extending the relaxed zone. As a consequence, the structural stability of the cavern was assured with an appropriate support system.

  • PDF

Assessment of seismic behavior stone bridge using a finite element method and discrete element method

  • Naderi, Melika;Zekavati, Mehdi
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.297-303
    • /
    • 2018
  • Seismic behavior of Osmanli and Senyuva stone bridges was addressed in this study. A combination of FEM and DEM was employed for getting closer to the real behavior of the bridge. One of the unique features of this combinational method is simulation close to reality. Modal numerical analysis was also used to verify the modeling. At the end of earthquake, a part of two lateral walls of Osmanli bridge was broken. The growth of arch cracks also increased during the earthquake. A part of right-hand wall of Senyuva Bridge was destructed during the earthquake. The left-hand side of the bridge wall was damaged during the earthquake but was not destructed.