• 제목/요약/키워드: Numerical Visualization

검색결과 425건 처리시간 0.025초

2단 패들 임펠러를 갖춘 구형교반조에서의 유동상태 (Flow Patterns in a Spherical Vessel with Double-Stage Paddle Impeller)

  • 이영세;이준만
    • 한국산업융합학회 논문집
    • /
    • 제10권4호
    • /
    • pp.263-269
    • /
    • 2007
  • A numerical algorithm for three-dimension laminar flow in an agitated vessel was established by using the spherical coordinates. Flow pattern for the double-stage paddle impeller was not dependent upon the distance of among the impeller in the agitated vessels. The numerical simulation of the flow pattern in spherical and cylindrical agitated vessel agree well with the visualization results.

  • PDF

헬스케어 데이터 시각화 연구 - 모바일 헬스케어 서비스를 중심으로 - (A Study on Proposing a Guideline for Healthcare Service Visualization - Focusing on the mobile healthcare applications -)

  • 노은지;박승호
    • 디자인융복합연구
    • /
    • 제15권4호
    • /
    • pp.1-16
    • /
    • 2016
  • 헬스케어 서비스는 모바일이나 디바이스로부터 사용자 개인의 활동량, 생체데이터를 수집하여 제공하는데, 데이터가 종과 횡으로 확장됨에 따라 이를 어떻게 효과적으로 보여 줄 것인가에 대한 연구 필요성이 제기 되었다. 정보의 시각화 과정에서 동일 데이터라 할지라도 어떻게 보여주느냐에 따라 다양하게 해석될 수 있다. 헬스케어 데이터는 사람들의 건강과 직접적으로 연결되어 있는 만큼 왜곡이나 오류 없이 정보 수용자에게 전달되어야한다. 본 연구는 사용자로부터 획득한 데이터의 시각화를 위한 최소 가이드를 제안하고 있다. 문헌연구를 통해 정보디자인을 위한 원칙을 정리하고, 사용자의 동기부여를 획득가치로 상정하고 모바일 헬스케어 시각화 기준을 정의하였다. 이러한 기준을 반영하여 구체적인 시각화를 제안하기 위해 현재값, 계측값, 상대값, 관계데이터, 예상값의 다섯 가지 데이터를 모바일 헬스케어의 지속적인 사용에 필요한 값으로 설정하였고, 헬스케어 서비스를 활성화시키기 위한 기준인 명확성, 변수비교, 간결성, 연관도, 신뢰성, 자결성, 맥락성을 적용하여 구체적인 시각화 가이드를 제안하였다.

PEM 연료전지 공기극 유로에서 물의 거동에 대한 CFD 해석과 가시화 실험의 비교 연구 (A Comparison Study of CFD Analysis and Flow Visualization on Behavior of Liquid Water in Cathode Channels of PEM Fuel Cells)

  • 김현일;남진현;신동훈;정태용;김영규;서원석;이정운
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2008년도 춘계학술 발표회
    • /
    • pp.101-108
    • /
    • 2008
  • Polymer electrolyte membrane (PEM) fuel cells are promising power generation devices which are ideal for residential and automobile applications, thanks to their fast transient characteristics. However, liquid water produced in PEM fuel cells should be properly managed to enhance the performances and durabilities of the cells. In this study, a visualization experiment was conducted to investigate the flow behavior of water droplets in cathode channels. The visualization experiment was done with four different model flow channels which were made by varying the material (Acrylic and Teflon) and the channel width (1 mm and 2 mm). Acrylic is hydrophilic (contact angle is about $80^{\circ}$) while Teflon is hydrophobic (contact angle is about $120^{\circ}$). A computational fluid dynamics (CFD) analysis was also performed to compare the observed and the simulated two-phase water/air flow characteristics in cathode channels. The computational models were made to be consistent with the geometries and surface properties of the model flow channels. Both the experimental and numerical results showed that the Teflon cathode channel with 1 mm width has the best water management performance among four model flow channels considered. A close correlation was found between the experimental visualization results and the numerical CFD simulation results.

  • PDF

고속탄자 유동의 가시화 실험 및 비정렬격자 계산 (Flow Visualization and Unstructured Grid Computation of Flow over a High-Speed Projectile)

  • 이상길;최서원;강준구;임홍규;백영호;김두연;강호철
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.12-20
    • /
    • 1998
  • Exter ballistics of a typical high-speed projectile is studied through a flow-visualization experiment and an unstructured grid Navier-Srokes computation. Experiment produced a schlieren photograph that adequately shows the characteristic features of this complex flow, namely two kinds of oblique cone shocks and turbulent wake developing into the downstream. A hybrid scheme of finite volume-element method is used to simulate the compressible Reynolds-Averaged Navier-Stok- es solution on unstructured grids. Osher's approximate Riemann solver is used to discretize the cinvection term. Higher-order spatial accuracy is obtained by MUSCL extension and van Albada ty- pe flux limiter is used to stabilize the numerical oscillation near the solution discontinuity. Accurate Gakerkin method is used to discretize the viscous term. Explict fourth-order Runge-Kutta method is used for the time-stepping, which simplifies the application of MUSCL extension. A two-layer k-$\varepsilon$ turbulence model is used to simulate the turbulent wakes accurately. Axisymmetric folw and two-dimensional flow with an angle of attack have been computed. Grid-dependency is also checked by carrying out the computation with doubled meshes. 2-D calculation shows that effect of angle of attack on the flow field is negligible. Axi-symmetric results of the computation agrees well with the flow visualization. Primary oblique shock is represented within 2-3 meshes in numerical results, and the varicose mode of the vortex shedding is clearly captured in the turbulent wake region.

  • PDF

난류채널유동에서 움직이는 벽면에 대한 수치연구 (Numerical Investigation of the Moving Wall Effects in Turbulent Channel Flows)

  • 황준혁;이재화
    • 한국가시화정보학회지
    • /
    • 제15권3호
    • /
    • pp.27-33
    • /
    • 2017
  • Direct numerical simulations of turbulent channel flows with moving wall conditions on the top wall are performed to examine the effects of the moving wall on the turbulent characteristics. The moving wall velocity only applied to the top wall with the opposite direction to the main flow is systematically varied to reveal the sustained-mechanism for turbulence. The turbulence statistics for the Couette-Poiseuille flow, such as mean velocity, root mean square of the velocity fluctuations, Reynolds shear stress and pre-multiplied energy spectra of the velocity fluctuations, are compared with those of canonical turbulent channel flows. The comparison suggests that although the turbulent activity on the top wall increases with increasing the Reynolds number, that on the bottom wall decreases, contrary to the previous finding for the canonical turbulent channel flows. The increase of the turbulent energy on the top wall is attributed to not only the increase of the Reynolds number but also elongation of the logarithmic layer due to increase of the wall layer on the top wall. However, because the logarithmic layer is shortened on the bottom wall due to the decrease of the wall layer, the turbulence energy on the bottom wall decreases despite of the increase of the Reynolds number.

홴 후방 유동장을 고려한 홴싱크 설계에 관한 연구 (A Study on the Design of a Fan-Sink Considering the Flow Fields Behind the Fan Outlet)

  • 조진수;한승호;한철희
    • 대한기계학회논문집B
    • /
    • 제26권8호
    • /
    • pp.1055-1061
    • /
    • 2002
  • A numerical and experimental study on the flow fields behind the fan outlet was carried out to improve the performance of a conventional fan-sink(fan and heat sink). Conventional fan-sinks have a heat sink of which fin configurations tend to increase the flow resistance, thus decreasing the performance and the cooling capabilities of a fan-sink. Lifting surface method is used for the prediction of flow fields behind the fan outlet. Oil-dot flow visualization technique is applied for the validation of numerical results. The numerical results and experimental data show agreement each other. A conventional heat sink is modified and redesigned using flow patterns behind the fan outlet. The newly designed heat sink has the configuration of curved fins which minimize flow resistance. It showed improvements in both cooling: capabilities and volumetric flow rate compared to the conventional one.

″Drifting Cups on a Meandering Stream″ in Japan

  • Nakayama, Yasuki;Aoki, K.;Oki, M.;Kobayashi, T.;Saga, T.;Maruoka, H.;Kato, S.
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1768-1774
    • /
    • 2001
  • Drifting Cups on a Meandering Stream (Kyokusui-no-En) is a Poetry Party that had its origin In ancient China, and was introduced to Japan passing through Korea. The flow of the meandering stream was made clear using the flow visualization techniques, surface floating method, PTV and the numerical simulation. At the same time, the motions of floating cup, the floating speed, relating speed and the trajectory of the cup were also analysed by using an originally developed image processing technique. Based on these researches, the model channel was considered. To make this party interesting the channel must has the characteristic that the drifting cups take the random pass and stagnant at the unexpected place. This model channel is satisfied with these conditions and the fluid mechanics consideration is performed on the both points of the experimental visualization and numerical simulation.

  • PDF

엘리베이터 카 내부 기류분포에 관한 열 유동해석 (Thermal and Fluid Analysis on Air Distribution in a Elevator Car)

  • 정경택;이중섭
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.56-62
    • /
    • 2020
  • The purpose of this study is to observe the visualization of the flow field for air flow distributed in the car from the ventilation fan installed in the ceiling of the passenger elevator car through the numerical analysis using computational fluid dynamics. STAR-CCM+, which is a code used for the numerical analysis, was used to predict the airflow distribution inside the elevator car. The numerical analysis of the distribution of the air current in the elevator was carried out. As a result, the analysis results for each point and the visualization of the air current distribution and the temperature distribution in the elevator car and were obtained. It was found that heat transfer was actively occurring inside the car due to the influence of the flow field discharged from the ventilation vent installed in the ceiling in the elevator car, and especially the convection heat transfer of Model-2 was more active than that of Model-1. As a result, the temperature distribution inside the car was found to be relatively low. In addition, the temperature distribution at a cross-section of 1700mm height in the elevator car shows that Model-2 is the location of the ventilation vent which makes people feel more comfortable.

Numerical Simulation of Solution Droplets and Falling Films in Horizontal Tube Absorbers

  • Phan Thanh-Tong;Lee Ho-Saeng;Yoon Jung-In;Kim Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.597-607
    • /
    • 2006
  • This paper presents a numerical simulation of the behavior of the LiBr solution droplets and falling films in horizontal tube banks of absorber. The model developed here accounts for the details of the droplets formation and impact process for absorption on horizontal tubes including the heat transfer from solution film to the tube wall. Especially. the characteristic of unsteady behavior of solution flow has been investigated. Flow visualization studies shown that the solution droplets and falling films have some of the complex characteristics. It is found that. with the numerical conditions similar to the operating condition of an actual absorption chiller/heater, the outlet solution temperature and heat flux from solution film to the tube wall have a stable periodic behavior with time. The solution droplets and falling films in horizontal tube banks of absorber is a periodic unsteady flow. The results from this model are compared with previous experimental observation taken with a high-speed digital video camera and shown good agreement.