• Title/Summary/Keyword: Numerical Prediction

Search Result 2,733, Processing Time 0.042 seconds

Understanding and predicting physical properties of rocks through pore-scale numerical simulations (공극스케일에서의 시뮬레이션을 통한 암석물성의 이해와 예측)

  • Keehm, Young-Seuk;Nur, Amos
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.201-206
    • /
    • 2006
  • Earth sciences is undergoing a gradual but massive shift from description of the earth and earth systems, toward process modeling, simulation, and process visualization. This shift is very challenging because the underlying physical and chemical processes are often nonlinear and coupled. In addition, we are especially challenged when the processes take place in strongly heterogeneous systems. An example is two-phase fluid flow in rocks, which is a nonlinear, coupled and time-dependent problem and occurs in complex porous media. To understand and simulate these complex processes, the knowledge of underlying pore-scale processes is essential. This paper presents a new attempt to use pore-scale simulations for understanding physical properties of rocks. A rigorous pore-scale simulator requires three important traits: reliability, efficiency, and ability to handle complex microstructures. We use the Lattice-Boltzmann (LB) method for singleand two-phase flow properties, finite-element methods (FEM) for elastic and electrical properties of rocks. These rigorous pore-scale simulators can significantly complement the physical laboratory, with several distinct advantages: (1) rigorous prediction of the physical properties, (2) interrelations among the different rock properties in a given pore geometry, and (3) simulation of dynamic problems, which describe coupled, nonlinear, transient and complex behavior of Earth systems.

  • PDF

Regional Realtime Ocean Tide and Storm-surge Simulation for the South China Sea (남중국해 지역 실시간 해양 조석 및 폭풍해일 시뮬레이션)

  • Kim, Kyeong Ok;Choi, Byung Ho;Lee, Han Soo;Yuk, Jin-Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.69-83
    • /
    • 2018
  • The South China Sea (SCS) is a typical marginal sea characterized with the deep basin, shelf break, shallow shelf, many straits, and complex bathymetry. This study investigated the tidal characteristics and propagation, and reproduced typhoon-induced storm surge in this region using the regional real-time tide-surge model, which was based on the unstructured grid, resolving in detail the region of interest and forced by tide at the open boundary and by wind and air pressure at the surface. Typhoon Haiyan, which occurred in 2013 and caused great damage in the Philippines, was chosen as a case study to simulate typhoon's impact. Amplitudes and phases of four major constituents were reproduced reasonably in general, and the tidal distributions of four constituents were similar to the previous studies. The modelled tide seemed to be within the acceptable levels, considering it was difficult to reproduce the tide in this region based on the previous studies. The free oscillation experiment results described well the feature of tide that the diurnal tide is prevailing in the SCS. The tidal residual current and total energy dissipation were discussed to understand the tidal and sedimentary environments. The storm-surge caused by typhoon Haiyan was reasonably simulated using this modeling system. This study established the regional real-time barotropic tide/water level prediction system for the South China Sea including the seas around the Philippines through the validation of the model and the understanding of tidal characteristics.

Experimental Study of Estimating the Optimized Parameters in OI (서남해안 관측자료를 활용한 OI 자료동화의 최적 매개변수 산정 연구)

  • Gu, Bon-Ho;Woo, Seung-Buhm;Kim, Sangil
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.458-467
    • /
    • 2019
  • The purpose of this study is the suggestion of optimized parameters in OI (Optimal Interpolation) by experimental study. The observation of applying optimal interpolation is ADCP (Acoustic Doppler Current Profiler) data at the southwestern sea of Korea. FVCOM (Finite Volume Coastal Ocean Model) is used for the barotropic model. OI is to the estimation of the gain matrix by a minimum value between the background error covariance and the observation error covariance using the least square method. The scaling factor and correlation radius are very important parameters for OI. It is used to calculate the weight between observation data and model data in the model domain. The optimized parameters from the experiments were found by the Taylor diagram. Constantly each observation point requires optimizing each parameter for the best assimilation. Also, a high accuracy of numerical model means background error covariance is low and then it can decrease all of the parameters in OI. In conclusion, it is expected to have prepared the foundation for research for the selection of ocean observation points and the construction of ocean prediction systems in the future.

An early warning and decision support system to reduce weather and climate risks in agricultural production

  • Nakagawa, Hiroshi;Ohno, Hiroyuki;Yoshida, Hiroe;Fushimi, Erina;Sasaki, Kaori;Maruyama, Atsushi;Nakano, Satoshi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.303-303
    • /
    • 2017
  • Japanese agriculture has faced to several threats: aging and decrease of farmer population, global competition, and the risk of climate change as well as harsh and variable weather. On the other hands, the number of large scale farms is increasing, because farm lands have been being aggregated to fewer numbers of farms. Cost cutting, development of efficient ways to manage complicatedly scattered farm lands, maintaining yield and quality under variable weather conditions, are required to adapt to changing environments. Information and communications technology (ICT) would contribute to solve such problems and to create innovative technologies. Thus we have been developing an early warning and decision support system to reduce weather and climate risks for rice, wheat and soybean production in Japan. The concept and prototype of the system will be shown. The system consists of a weather data system (Agro-Meteorological Grid Square Data System, AMGSDS), decision support contents where information is automatically created by crop models and delivers information to users via internet. AMGSDS combines JMA's Automated Meteorological Data Acquisition System (AMeDAS) data, numerical weather forecast data and normal values, for all of Japan with about 1km Grid Square throughout years. Our climate-smart system provides information on the prediction of crop phenology, created with weather forecast data and crop phenology models, as an important function. The system also makes recommendations for crop management, such as nitrogen-topdressing, suitable harvest time, water control, pesticide spray. We are also developing methods to perform risk analysis on weather-related damage to crop production. For example, we have developed an algorism to determine the best transplanting date in rice under a given environment, using the results of multi-year simulation, in order to answer the question "when is the best transplanting date to minimize yield loss, to avoid low temperature damage and to avoid high temperature damage?".

  • PDF

Comparative Analysis of Fault Prediction with Horizontal and Longitudinal Displacements on Tunnel (터널 굴진면 수평변위와 천단변위를 이용한 단층대 예측방법의 비교·분석)

  • Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.403-411
    • /
    • 2016
  • A three-dimensional finite element analysis was conducted to analyze the predictable distances of a fault zone by using longitudinal displacement on tunnel face, trend line, L/C ratio, and C/C0 ratio at tunnel crown. The analysis used 28 numerical models with various fault attitudes. As a result, those faults that have drives with dip could be predicted earliest in L/C and C/C0 ratio analysis. And those faults that have drives against dip could be predicted earliest in L/C ratio and longitudinal displacement analysis. In addition, the fault zone ahead of tunnel was predicted in most models by using longitudinal displacement, trend line, L/C ratio, and C/C0 ratio. However, the longitudinal displacement among these methods may be most usefully predict a fault zone since it is displacements can be measured immediately after tunnel excavation.

Analytical Method on PSC I Girder with Strengthening of External Tendon (외부강선으로 보강되는 PSC I 합성거더의 해석 기법)

  • Park, Jae-Guen;Lee, Byeong-Ju;Kim, Moon-Young;Shin, Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.697-704
    • /
    • 2008
  • This paper presents an analytical prediction of Nonlinear characteristics of prestressed concrete bridges by strengthened of externally tendon considering construction sequence, using unbonded tendon element and beam-column element based on flexibility method. Unbonded tendon model can represent unbounded tendon behavior in concrete of PSC structures and it can deal with the prestressing transfer of posttensioned structures and calculate prestressed concrete structures more efficiently. This tendon model made up the several nodes and segment, therefore a real tendon of same geometry in the prestressed concrete structure can be simulated the one element. The beam-column element was developed with reinforced concrete material nonlinearities which are based on the smeared crack concept. The fiber hysteresis rule of beam-column element is derived from the uniaxial constitutive relations of concrete and reinforcing steel fibers. The formulation of beam-column element is based on flexibility. Beam-column element and unbonded tendon element were be involved in A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), that were used the analysis of RC and PSC structures. The proposed numerical method for prestressed concrete structures by strengthened of externally tendon is verified by comparison with reliable experimental results.

Numerical Study on the Variation of Slope Stability for the Embankment Formed by Unsaturated Dredging Soils during Rainfall (강우시 불포화 준설토로 형성된 제방의 사면안정성 변화에 대한 수치해석적 연구)

  • You, Seung-Kyong;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.71-79
    • /
    • 2011
  • In this study, the variation of wetting front and ground water level at the embankment constructed in the Saemangeum area were predicted considering rainfall duration times and the slope stability analysis of the embankment was carried out according to prediction results of wetting front and ground water level. The embankment was formed by dredging soils. A suction stress, a cohesion and a frictional angle of dreding soils measured by soil tests were applied to estimate the unsaturated soil properties. According to the analysis results of the wetting front and the ground water level for various rainfall duration time, the wetting front began to descend from the upper part of embankment at the beginning time of rainfall and after 1 hour of rainfall duration time. After that, the ground water level continued to ascend as the rainfall duration time was getting longer. After rainfall, the ground water level was distributed at a certain depth, and the ground water level was gradually descending as time goes by. According to the slope stability analysis of the embankment considering the variation of the wetting front and the ground water level, the safety factor of slope was rapidly reduced as the rainfall began to infiltrate into the ground, and the minimum safety factor of slope was estimated after 24 hours of rainfall duration time. Meanwhile, the safety factor of slope was increased with regaining the matric suction in the ground after rainfall.

A Study on Prediction of Inundation Area considering Road Network in Urban Area (도시지역 도로 네트워크를 활용한 침수지역 예측에 관한 연구)

  • Son, Ah Long;Kim, Byunghyun;Han, Kun Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.307-318
    • /
    • 2015
  • In this study, the efficiency of two-dimensional inundation analysis using road network was demonstrated in order to reduce the simulation time of numerical model in urban area. For this objective, three simulation conditions were set up: Case 1 considered only inundation within road zone, while Case 2 and 3 considered inundation within road and building zone together. Accordingly, Case 1 used grids generated based on road network, while Case 2 and 3 used uniform and non-uniform grids for whole study area, respectively. Three simulation conditions were applied to Samsung drainage where flood damage occurred due to storm event on Sep. 21, 2010. The efficiency of suggested method in this study was verified by comparison the accuracy and simulation time of Case 1 and those of Case 2 and 3. The results presented that the simulation time was fast in the order of Case 1, 2 and 3, and the fit of inundation area between each case was more than 85% within road zone. Additionally, inundation area of building zone estimated from inundation rating index gave a similar agreement under each case. As a result, it is helpful for study on real-time inundation forecast warning to use a proposed method based on road network and inundation rating index for building zone.

Development of Water Hammer Simulation Model for Safety Assessment of Hydroelectric Power Plant (수력발전설비의 안전도 평가를 위한 수충격 해석 모형 개발)

  • Nam, Myeong Jun;Lee, Jae-Young;Jung, Woo-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.760-767
    • /
    • 2020
  • Sustainable growth of hydroelectric power plants is expected in consideration of climate change and energy security. However, hydroelectric power plants always have a risk of water hammer damage, and safety assurance is very important. The water hammer phenomenon commonly occurs during operations such as rapid opening and closing of the valves and pump/turbine shutdown in pipe systems, which is more common in cases of emergency shutdown. In this study, a computational numerical model was developed using the MOC-FDM scheme to reflect the mechanism of water hammer occurrence. The proposed model was implemented in boundary conditions such as reservoir, pipeline, valve, and pump/turbine conditions and then applied to simulate hypothetical case studies. The analysis results of the model were verified using the analysis results at the main points of the pipe systems. The model produced reasonably good performance and was validated by comparison with the results of the SIMSEN package model. The model could be used as an efficient tool for the safety assessment of hydroelectric power plants based on accurate prediction of transient behavior in the operation of hydropower facilities.

Development of Grid Based Distributed Rainfall-Runoff Model with Finite Volume Method (유한체적법을 이용한 격자기반의 분포형 강우-유출 모형 개발)

  • Choi, Yun-Seok;Kim, Kyung-Tak;Lee, Jin-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.895-905
    • /
    • 2008
  • To analyze hydrologic processes in a watershed requires both various geographical data and hydrological time series data. Recently, not only geographical data such as DEM(Digital Elevation Model) and hydrologic thematic map but also hydrological time series from numerical weather prediction and rainfall radar have been provided as grid data, and there are studies on hydrologic analysis using these grid data. In this study, GRM(Grid based Rainfall-runoff Model) which is physically-based distributed rainfall-runoff model has been developed to simulate short term rainfall-runoff process effectively using these grid data. Kinematic wave equation is used to simulate overland flow and channel flow, and Green-Ampt model is used to simulate infiltration process. Governing equation is discretized by finite volume method. TDMA(TriDiagonal Matrix Algorithm) is applied to solve systems of linear equations, and Newton-Raphson iteration method is applied to solve non-linear term. Developed model was applied to simplified hypothetical watersheds to examine model reasonability with the results from $Vflo^{TM}$. It was applied to Wicheon watershed for verification, and the applicability to real site was examined, and simulation results showed good agreement with measured hydrographs.