• Title/Summary/Keyword: Numerical Optimization Response Surface Method

Search Result 131, Processing Time 0.029 seconds

Performance Characteristics of the Double-Inlet Centrifugal Blower according to the Shape of an Impeller (임펠러 형상에 따른 양흡입 원심송풍기 성능특성)

  • Lee, Jong-Sung;Jang, Choon-Man
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • This paper presents the performance enhancement of a double-inlet centrifugal blower by the shape optimization of an impeller. Two design variables, a number of blade and a length of chord, are introduced, and analyzed by a response surface method. Three-dimensional compressible Navier-Stokes equations are used to analyze the blower performance and the internal flow of the blower. Throughout the numerical simulation of the blower, blower efficiency can be increased by reducing separation flow generating from the blade leading edge of a blade pressure surface. It is noted that recirculation flow observed inside the blade passage induces low velocity region, thus increases pressure loss. Efficiency and pressure of the optimum blower are successfully increased up to 3% and 3.9% compared to those of reference blower at the design flow condition, respectively. Detailed flow field inside the blower is also analyzed and compared.

Design Optimization of a Centrifugal Pump Impeller using RSM and Design of Volute (반응표면기법을 이용한 원심펌프 임펠러 최적설계 및 벌류트 설계)

  • Pyun, Kwon-Bum;Kim, Joon-Hyung;Choi, Young-Seok;Yoon, Joon-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.39-45
    • /
    • 2012
  • In this study, optimization of the impeller and design of volute were carried out in order to improve the performance of a centrifugal pump. Design parameters from vane plane development for impeller design were selected, and effect of the design parameters on the performance of the pump was analyzed by using Response Surface Methodology(RSM) to optimized impeller. In addition, total pump design method was suggested by designing volute which was suitable for the optimized impeller through volute design where Stepanoff theory was applied and numerical analysis.

Design Optimization of A Multi-Blade Centrifugal Fan With Variable Design Flow Rate (설계유량을 변수로 한 원심다익송풍기의 최적설계)

  • Seo, Seung-Jin;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1726-1731
    • /
    • 2004
  • This paper presents the response surface optimization method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan. For numerical analysis, Reynolds-averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence model are discretized with finite volume approximations. In order to reduce huge computing time due to a large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Three geometric variables, i.e., location of cut off, radius of cut off, and width of impeller, and one operating variable, i.e., flow rate, were selected as design variables. As a main result of the optimization, the efficiency was successfully improved. And, optimum design flow rate was found by using flow rate as one of design variables. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

  • PDF

Reliability-based design optimization using reliability mapping functions

  • Zhao, Weitao;Shi, Xueyan;Tang, Kai
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.125-138
    • /
    • 2017
  • Reliability-based design optimization (RBDO) is a powerful tool for design optimization when considering probabilistic characteristics of design variables. However, it is often computationally intensive because of the coupling of reliability analysis and cost minimization. In this study, the concept of reliability mapping function is defined based on the relationship between the reliability index obtained by using the mean value first order reliability method and the failure probability obtained by using an improved response surface method. Double-loop involved in the classical RBDO can be converted into single-loop by using the reliability mapping function. Since the computational effort of the mean value first order reliability method is minimal, RBDO by using reliability mapping functions should be highly efficient. Engineering examples are given to demonstrate the efficiency and accuracy of the proposed method. Numerical results indicated that the proposed method has the similar accuracy as Monte Carlo simulation, and it can obviously reduce the computational effort.

Loading Path Optimization in Aluminum Tube Hydroforming using Response Surface Method (반응표면법을 이용한 알루미늄 튜브 하이드로포밍의 하중경로 최적화)

  • Lim, H.T.;Kim, H.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.314-317
    • /
    • 2007
  • Automotive rear subframe of aluminum tube was developed by using hydroforming process, based on the numerical analysis and physical tryouts. In the previous study, the effect of prebending was evaluated on the basis of forming limit diagram which had been obtained from free bulging, T-shape forming and cross-shape forming, using the developed tube hydroformability testing system. In order to get the sound products, appropriate internal pressure is to be imposed corresponding to the axial feeding. In this study, the loading path, the combination of internal pressure and axial feeding during the process, was optimized to ensure minimum thickness variation and dimensional accuracy, by using response surface method.

  • PDF

A Comparative Study of Approximation Techniques on Design Optimization of a FPSO Riser Support Structure (FPSO Riser 지지구조의 설계최적화에 대한 근사화 기법의 비교 연구)

  • Shim, Chun-Sik;Song, Chang-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.543-551
    • /
    • 2011
  • The paper deals with the comparative study of design optimization based on various approximation techniques in strength design of riser support structure installed on floating production storage and offloading unit(FPSO) using offshore operation loading conditions. The design optimization problem is formulated such that structural member sizing variables are determined by minimizing the weight of riser support structure subject to the constraints of structural strength in terms of loading conditions. The approximation techniques used in the comparative study are response surface method based sequential approximate optimization(RBSAO), Kriging based sequential approximate optimization(KBSAO), and the enhanced moving least squares method(MLSM) based approximate optimization such as CF(constraint feasible)-MLSM and Post-MLSM. Commercial process integration and design optimization(PIDO) tools are employed for the applications of RBSAO and KBSAO. The enhanced MLSM based approximate optimization techniques are newly developed to ensure the constraint feasibility. In the context of numerical performances such as design solution and computational cost, the solution results from approximate techniques based design optimization are compared to actual non-approximate design optimization.

Slotted hydrofoil design optimization to minimize cavitation in amphibious aircraft application: A numerical simulation approach

  • Conesa, Fernando Roca;Liem, Rhea Patricia
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.309-333
    • /
    • 2020
  • The proposed study aims to numerically investigate the performance of hydrofoils in the context of amphibious aircraft application. In particular, we also study the effectiveness of a slotted hydrofoil in minimizing the cavitation phenomenon, to improve the overall water take-off performance of an amphibious aircraft. We use the ICON A5 as a base model for this study. First, we propose an approach to estimate the required hydrofoil surface area and to select the most suitable airfoil shape that can minimize cavitation, thus improving the hydrodynamic efficiency. Once the hydrofoil is selected, we perform 2D numerical studies of the hydrodynamic and cavitating characteristics of a non-slotted hydrofoil on ANSYS Fluent. In this work, we also propose to use a slotted hydrofoil to be a passive method to control the cavitation performance through the boundary layer control. Numerical results of several slotted configurations demonstrate notable improvement on the cavitation performance. We then perform a multiobjective optimization with a response surface model to simultaneously minimize the cavitation and maximize the hydrodynamic efficiency of the hydrofoil. The optimization takes the slot geometry, including the slot angle and lengths, as the design variables. In addition, a global sensitivity study has been carried and it shows that the slot widths are the more dominant factors.

Design Optimization on Wastewater Treatment Pump of Satisfaction for High Head and Low Flow Rate (고양정 및 저유량을 만족하는 폐수처리용 펌프 설계 최적화)

  • KIM, SUNG;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.583-590
    • /
    • 2022
  • In this paper, the performance characteristics of the 2 vane pump for wastewater treatment were investigated using response surface method(RSM) with commercial computation fluid dynamics(CFD) software. Design variables of wastewater treatment pump were defined with the meridional plane of the 2 vane pump impeller. The objective functions were defined as the total head and the efficiency at the design flow rate. The hydraulic performance of optimum model was verified by numerical analysis and the reliability of the model was retained by comparison of numerical analysis and comparative analysis with the reference model.

Multi-objective Optimization of a Laidback Fan Shaped Film-Cooling Hole Using Evolutionary Algorithm

  • Lee, Ki-Don;Husain, Afzal;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.150-159
    • /
    • 2010
  • Laidback fan shaped film-cooling hole is formulated numerically and optimized with the help of three-dimensional numerical analysis, surrogate methods, and the multi-objective evolutionary algorithm. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by four geometric design variables, the injection angle of the hole, the lateral expansion angle of the diffuser, the forward expansion angle of the hole, and the ratio of the length to the diameter of the hole, to maximize the film-cooling effectiveness compromising with the aerodynamic loss. The objective function values are numerically evaluated through Reynolds- averaged Navier-Stokes analysis at the designs that are selected through the Latin hypercube sampling method. Using these numerical simulation results, the Response Surface Approximation model are constructed for each objective function and a hybrid multi-objective evolutionary algorithm is applied to obtain the Pareto optimal front. The clustered points from Pareto optimal front were evaluated by flow analysis. These designs give enhanced objective function values in comparison with the experimental designs.

AERODYNAMIC ANALYSIS AND OPTIMIZATION STUDY OF THE HELICOPTER ROTOR BLADE IN HOVERING FLIGHT (정지비행시 헬리콥터 로터 블레이드의 공력해석 및 최적화)

  • Je, S.E.;Jung, H.J.;Kim, D.J.;Joh, C.Y.;Myong, R.S.;Park, C.W.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.125-129
    • /
    • 2007
  • In this paper a method for the design optimization for helicopter rotor blade in hover is studied Numerical analysis of aerodynamic characteristics of the flow around a rotor blade is analysed by usign panel method and CFD code based on Navier-Stokes equation. The result is validated by comparing with existing experimental result. Optimization methods RSM(Response Surface Method) and DOE(Design of Experiments) are applied in combination. The object functions are power, twist angle, taper ratio, and thrust. The optimized result showed a decrease of 17% of the power required.

  • PDF