• Title/Summary/Keyword: Numerical Computation

Search Result 1,367, Processing Time 0.023 seconds

Numerical Simulation of Incipient Breaking Waves (초기 쇄파의 수치모사)

  • 김용직;김선기
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.1-10
    • /
    • 2002
  • For the time-domain simulation of incipient breaking waves, usually the boundary integral method has been used so far, and it seems to be successful except a problem of too much computation time. The present paper shows a new computation technique for the simulation of breaking wave experiment. This technique uses the high-order spectral/boundary element method and the boundary integral method in sequence, and reduces the computation time remarkably. The wave generation and energy focusing process is efficiently simulated by the high-order spectral/boundary element method. Only the wave over-turning process is simulated by the boundary integral method. In the example calculation result, salient features of breaking waves such as high particle velocities and accelerations are shown.

A Study on the Numerical Simulation Method of Two-dimensional Incompressible Fluid Flows using ISPH Method (ISPH법을 이용한 2차원 비압축성 유체 유동의 수치시뮬레이션 기법 연구)

  • Kim, Cheol-Ho;Lee, Young-Gill;Jeong, Kwang-Leol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.560-568
    • /
    • 2011
  • In SPH(Smoothed Particle Hydrodynamics) method, the fluid has been assumed that it is weakly compressible to solve the basic equations composed of Navier-Stokes equations and continuity equation. That leads to some drawbacks such as non-physical pressure fluctuations and a restriction as like small time steps in computation. In this study, to improve these problems we assume that the fluid is incompressible and the velocity-pressure coupling problem is solved by a projection method(that is, by ISPH method). The two-dimensional computation results of dam breaking and gravitational wave generation are respectively compared with the results of finite volume method and analytical method to confirm the accuracy of the present numerical computation technique. And, the agreements are comparatively acceptable. Subsequently, the green water simulations of a two-dimensional fixed barge are carried out to inspect the possibility of practical application to ship hydrodynamics, those correspond to one of the violent free surface motions with impact loads. The agreement between the experimental data and the present computational results is also comparatively good.

Computation of Turbulent Flow around Wigley Hull Using 4-Stage Runge-Kutta Scheme on Nonstaggered Grid (정규격자계와 4단계 Range-Kutta법을 사용한 Wigley선형 주위의 난류유동계산)

  • Suak-Hp Van;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.87-99
    • /
    • 1994
  • Reynolds Averaged Navier-Stokes equations are solved numerically for the computation of turbulent flow around a Wigley double model. A second order finite difference method is applied for the spatial discretization on the nonstaggered grid system and 4-stage Runge-Kutta scheme for the numerical integration in time. In order to increase the time step, residual averaging scheme of Jameson is adopted. Pressure field is obtained by solving the pressure-Poisson equation with the appropriate Neumann boundary condition. For the turbulence closure, 0-equation turbulence model of Baldwin-Lomax is used. Numerical computation is carried out for the Reynolds number of 4.5 million. Comparisons of the computed results with the available experimental data show good agreements for the velocity and pressure distributions.

  • PDF

Numerical Analysis and Flow Visualization for Spin-up in a Half-Cylinder (반 원주 내의 스핀업 유동에 대한 수치해석 및 유동 가시화)

  • Suh Yong Kweon;Yeo Chang Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.71-74
    • /
    • 2003
  • In this paper, we report the numerical and experimental results in a half-cylinder. In the numerical computation, we used the zonal embedded grid system. Flow visualization for the spin-up flows was used by PIV. The results show that at left hand side an cyclonic cell moves along a wall and separates into both cells at right hand side.

  • PDF

3D numerical simulation of temperature on Pilot tube

  • Ying Wang;Baogeng Ding
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.248-251
    • /
    • 2006
  • Multi-physics problem is considered for the Pitot tube located in uniform freon gas flow with high Mach number and the 3D numerical results of temperature on Pitot tube is given. The model is created by using structural module of ANSYS, the grids are obtained by ICEM, and the problem is solved and the data post-processing is done by CFX.

  • PDF

Electric Field Analysis Using Three Dimensional Boundary Integral Equation Method (3차원 경계적분방정식법을 이용한 정전장 해석)

  • Kim, Jae-Hong;Kim, Dong-Hun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.828-830
    • /
    • 2000
  • This paper describes BIEM(Boundary Integral Equation Method) for computation of three dimensional electric field distribution and numerical method that an equivalent charge density is unknown variable. After computing numerically the surface charge distribution. the distribution of both potential and electric field are obtained. Finally, this numerical method is applied to the concentric sphere and the coaxial cylindrical model and numerical result is compared to the analytic solution.

  • PDF

Application of Preconditioning Method to Cavitating Flow Computation

  • Shin, Byeong-Rog
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1903-1908
    • /
    • 2004
  • A preconditioned numerical method for gas-liquid two-phase flows is applied to solve cavitating flow. The present method employs a finite-difference dual time-stepping integration procedure and the MUSCLTVD scheme. A homogeneous equilibrium cavitation model is used. The present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation, large density changes and incompressible flow characteristics at low Mach number. Some internal flows such as convergent-divergent nozzles are computed using this method. Comparisons of predicted and experimental results are provided and discussed.

  • PDF

The Study for Spin-up Flows in a Shallow Quadrangular Container (얇은 정사각형 용기내의 스핀-업 유동에 관한 연구)

  • 박재현;서용권
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.207-212
    • /
    • 2001
  • In this study, spin-up flows in a shallow rectangular container are analysed by using three-dimensional computation. We compared our results with those obtained by quasi three-dimensional computation. Our results show that quasi S-D solustion is not accurate enough and it provides far less damped solution.

  • PDF

THE COMPUTATION OF POSITIVE SOLUTIONS FOR A BOUNDARY VALUE PROBLEM OF THE LINEAR BEAM EQUATION

  • Ji, Jun;Yang, Bo
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.215-224
    • /
    • 2017
  • In this paper, we propose a method of order two for the computation of positive solutions to a boundary value problem of the linear beam equation. The method is based on the Power method for the eigenvector associated with the dominant eigenvalue and the Crout-like factorization algorithm for the banded system of linear equations. It is extremely fast due to the linear complexity of the linear system solver. Numerical result of a test problem is included.

Inference of Parameters for Superposition with Goel-Okumoto model and Weibull model Using Gibbs Sampler

  • Heecheul Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.169-180
    • /
    • 1999
  • A Markov Chain Monte Carlo method with development of computation is used to be the software system reliability probability model. For Bayesian estimator considering computational problem and theoretical justification we studies relation Markov Chain with Gibbs sampling. Special case of GOS with Superposition for Goel-Okumoto and Weibull models using Gibbs sampling and Metropolis algorithm considered. In this paper discuss Bayesian computation and model selection using posterior predictive likelihood criterion. We consider in this paper data using method by Cox-Lewis. A numerical example with a simulated data set is given.

  • PDF