• 제목/요약/키워드: Numerical Boundary

검색결과 4,010건 처리시간 0.028초

경계요색법(境界要索法)에 의한 투과잠제(透過潛堤)의 해석기법(解析技法) (Permeable Breakwaters Analysis by Using Boundary Element Method)

  • 김남현;淹川淸;최한규
    • 산업기술연구
    • /
    • 제10권
    • /
    • pp.69-72
    • /
    • 1990
  • In this paper the numerical method for the study of wave reflection from and transmission through submerged permeable breakwaters using the boundary element method is developed. The numerical analysis technique is based on the wave pressure function instead of velocity potential because it is difficult to define the velocity potential in the each region arising the energy dissipation. Also, the non-linear energy dissipation within the submerged porous structure is simulated by introducing the linear dissipation coefficient and the tag mass coefficient equivalent to the non-linear energy dissipation. For the validity of this analysis technique, the numerical results obtained by the present boundary element method are compared with those obtained by the other computation method. Good agreements are obtained and so the validity of the present numerical analysis technique is proved.

  • PDF

Langmuir 미끄럼 경계조건을 이용한 미소 박리유동의 예측 (Predictions of Microscale Separated Flow using Langmuir Slip Boundary Condition)

  • 이도형;맹주성;최형일;나욱상
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1097-1104
    • /
    • 2003
  • The current study analyzes Langmuir slip boundary condition theoretically and it is tested in practical numerical analysis for separation-associated flow. Slip phenomenon at the channel wall is properly implemented by various numerical slip boundary conditions including Langmuir slip model. Compressible backward-facing step flow is compared to other analysis results with the purpose of diatomic gas Langmuir slip model validation. The numerical solutions of pressure and velocity distributions where separation occurs are in good agreement with other numerical results. Numerical analysis is conducted for Reynolds number from 10 to 60 for a prediction of separation at T-shaped micro manifold. Reattachment length of flows shows nonlinear distribution at the wall of side branch. The Langmuir slip model predicts fairly the physics in terms of slip effect and separation.

OpenFOAM과 어댑티드 격자를 이용한 난류 경계층의 직접 수치 모사 (Direct Numerical Simulations of Turbulent Boundary Layer using OpenFOAM and Adapted Mesh)

  • 이상봉
    • 대한조선학회논문집
    • /
    • 제53권3호
    • /
    • pp.210-216
    • /
    • 2016
  • Direct numerical simulations of a spatially developing turbulent boundary layer on a flat plate have been performed to verify the applicability of OpenFOAM and adapted mesh with prism layers to turbulent numerical simulation with high fidelity as well as provide a guideline on numerical schemes and parameters of OpenFOAM. Reynolds number based on a momentum thickness at inlet and a free-stream velocity was Reθ=300. Time dependent inflow fields with near-wall turbulent structures were generated by a method of Lund et al. (1998), which was to extract instantaneous velocity fields from an auxiliary simulation with rescaled and recycled velocities at inlet. To ascertain the statistical characteristics of turbulent boundary layer, the mean profiles of streamwise velocity and turbulent intensities obtained from structured and adapted meshes were compared with the previous data.

Large Eddy Simulation of Shock-Boundary Layer Interaction

  • Teramoto, Susumu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.426-432
    • /
    • 2004
  • Large-Eddy Simulation (LES) is applied for the simulation of compressible flat plate boundary with Reynolds number up to 5 X 10$^{5}$ . Numerical examples include shock/boundary layer interaction and boundary layer transition, aiming future application to the analysis of transonic fan/compressor cascades. The present LES code uses hybrid com-pact/WENO scheme for the spatial discretization and compact diagonalized implicit scheme for the time integration. The present code successfully predicted the bypass transition of subsonic boundary layer. As for supersonic turbulent boundary layer, mean and fluctuation velocity of the attached boundary, as well as the evolution of the friction coefficient and the displacement thickness both upstream and downstream of the separation region are all in good agreement with experiment. The separation point also agreed with the experiment. In the simulation of the shock/laminar boundary layer interaction, the dependence of the transition upon the shock strength is reproduced qualitatively, but the extent of the separation region is overpredicted. These numerical examples show that LES can predict the behavior of boundary layer including transition and shock interaction, which are hardly managed by the conventional Reynolds-averaged Navier-Stokes approach, although there needs to be more effort before achieving quantitative agreement.

  • PDF

비평형 1 차 외삽 경계조건을 이용한 격자 볼츠만 법의 수치적 안정성 및 정확도에 관한 연구 (A Study on the Numerical Stability and Accuracy of Lattice Boltzmann Method with Non-equilibrium first order extrapolation boundary condition)

  • 정해권;김래성;이현구;하만영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2684-2689
    • /
    • 2007
  • Non-equilibrium first order extrapolation boundary condition proposed by Guo et $al.^{(9)}$ proposed has a good application for complex geometries, a second order accuracy and a treatment on non-slip wall boundary condition easily. However it has a lack of the numerical stability from high Reynolds number. Guo et $al.^{(9)}$ substituted the density value of adjacent nodes for the density of boundary nodes. This procedure causes the numerical instability on the boundary. In this paper, we derived a procedure of density extrapolation and compared to previous results.

  • PDF

Bump가 있는 초음속 흡입구 유동장의 수치적 연구 (THE NUMERICAL STUDY ON THE SUPERSONIC INLET FLOW FIELD WITH A BUMP)

  • 김상덕;송동주
    • 한국전산유체공학회지
    • /
    • 제10권3호
    • /
    • pp.19-26
    • /
    • 2005
  • The purpose of this paper is the study on the characteristics of an inlet system with shock/boundary layer interactions by using various types of bumps which are substituted for the conventional bleeding system in supersonic inlet. in this study a comprehensive numerical analysis has been performed to understand the three-dimensional flow field including shock/boundary layer interaction and growth of turbulent boundary layer that might occur around a three-dimensional bump in a supersonic inlet. The characteristics of boundary layer seen in the current numerical simulations indicate the potential capability of a three-dimensional bump to control shock/boundary layer interaction in supersonic inlets.

A FIFTH ORDER NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.689-706
    • /
    • 2008
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed two point boundary value problems with a boundary layer at one end point. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system. An asymptotically equivalent first order equation of the original singularly perturbed two point boundary value problem is obtained from the theory of singular perturbations. It is used in the fifth order compact difference scheme to get a two term recurrence relation and is solved. Several linear and non-linear singular perturbation problems have been solved and the numerical results are presented to support the theory. It is observed that the present method approximates the exact solution very well.

  • PDF

A Study on the Treatment of Open Boundary in the Two-Dimensional Free-Surface Wave Problems

  • Kim, Yong-Hwan
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제2권1호
    • /
    • pp.63-78
    • /
    • 1994
  • This paper deals with the treatment of the open boundary in two-dimensional free-surface wave problems. Two numerical schemes are investigated for the implementation of the open boundary condition. One is to add the artificial damping term to the dynamic free-surface boundary condition, in which the determination of suitable damping coefficient and the damping zone is the most important. The other is a modified Orlanski's method, which is known to be very useful for the uni-directional waves. Using these two schemes, numerical tests have been conducted for a few typical free-surface wave problems. To obtain the numerical solution of the free-surface boundary value problem, the fundamental source-distribution method is used and the fully nonlinear free-surface boundary conditions are applied. The computed results are presented in comparison with those of others for the proof of practicality of these two schemes.

  • PDF

Bump가 있는 초음속 유동장의 수치적 연구 (The Numerical Study on the Supersonic Flow field with a Bump)

  • 김상덕;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.213-218
    • /
    • 2005
  • The purpose of this study is the characteristics of an innovative inlet system with shock/boundary layer interactions by using various types of bumps which are substituted for the conventional bleeding system in supersonic inlet. This study performs a comprehensive numerical effort that be directed at better understanding the three-dimensional flowfield includes shock/boundary layer interaction and growth of turbulent boundary layer that occur around a three-dimensional bump in a supersonic inlet. The characteristics of boundary layer seen in the current numerical simulations indicates the potential capability of the three-dimensional bump to control shock/boundary layer interaction in supersonic inlets.

  • PDF

CFDS기법에 연계된 특성경계조건에 응용성에 대한 소개 (Applications of Characteristic Boundary Conditions within CFDS Numerical Framework)

  • 홍승규;이광섭
    • 한국전산유체공학회지
    • /
    • 제5권1호
    • /
    • pp.43-59
    • /
    • 2000
  • Characteristic boundary conditions are discussed in conjunction with a flux-difference splitting formulation as modified from Roe's linearization. Details of how one can implement the characteristic boundary conditions which are made compatible with the interior point formulation are described for different types of boundaries including subsonic outflow and adiabatic wall. The validity of boundary conditions are demonstrated through computation of transonic airfoil, supersonic ogive-cylinder, hypersonic cylinder, and S-duct internal flows. The computed wall pressure distributions are compared with published experimental and computed data. Objectives of this paper are thus to give insight of formulation procedure of a flux-difference splitting method and to pave ways for other users to adopt present boundary procedure on their numerical methods.

  • PDF