• Title/Summary/Keyword: Numerical Behaviour

Search Result 856, Processing Time 0.024 seconds

A Study on Effects of Failure Behaviour of Tunnel Using A Numerical Analysis (수지해석에 의한 터널의 파괴거동에 미지는 영향분석)

  • 김영민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.309-314
    • /
    • 1999
  • In this paper, an application of finite element procedure fur tunnel failure analysis has been studied. The numerical model is applied to the simulation of a series of plane strain laboratory tests on the small scale model of a shallow tunnel. By comparing experimental and numerical results some conclusions are drawn on the effectiveness of the numerical approach. The findings from these numerical experiments show relative differences in the pattern of failure behaviour for shallow tunnels.

  • PDF

A numerical approach for simulating the behaviour of timber shear walls

  • Loo, Wei Yuen;Quenneville, Pierre;Chouw, Nawawi
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.383-407
    • /
    • 2012
  • A numerical approach to simulate the behaviour of timber shear walls under both static and dynamic loading is proposed. Because the behaviour of timber shear walls hinges on the behaviour of the nail connections, the force-displacement behaviour of sheathing-to-framing nail connections are first determined and then used to define the hysteretic properties of finite elements representing these connections. The model nails are subsequently implemented into model walls. The model walls are verified using experimental results for both monotonic and cyclic loading. It is demonstrated that the complex hysteretic behaviour of timber shear walls can be reasonably represented using model shear walls in which nonlinear material failure is concentrated only at the sheathing-to-framing nail connections.

Experimental and numerical studies of mono-strand anchorage

  • Marceau, D.;Bastien, J.;Fafard, M.;Chabert, A.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.119-134
    • /
    • 2001
  • This paper deals with an experimental and numerical study of a mono-strand wedge anchor head mechanism. First, the experimental program is presented and monitored data such as wedge slippage, anchor deflection and strain distributions along external peripheral surfaces of the anchor head are presented and discussed. In accordance with the experimental set up, these data concern only the global behaviour of the mechanism and cannot provide valuable information such as internal stress-strains distributions, stress concentrations and percentage of yielded volume. Therefore, the second part of this paper deals with the development of an efficient numerical finite element model capable of providing mechanism of the core information. The numerical model which includes all kinematics/material/contact non-linearities is first calibrated using experimental data. Subsequently, a numerical study of the anchorage mechanism is performed and its behaviour is compared to the behaviour of a slightly geometrically modified mechanism where the external diameter has been increased by 5 mm. Finally, different topics influencing the anchorage mechanism behaviour are addressed such as lubrication and wedge shape.

Effect of parameters on the tensile behaviour of textile-reinforced concrete composite: A numerical approach

  • Tien M. Tran;Hong X. Vu;Emmanuel Ferrier
    • Advances in concrete construction
    • /
    • v.16 no.2
    • /
    • pp.107-117
    • /
    • 2023
  • Textile-reinforced concrete composite (TRC) is a new alternative material that can satisfy sustainable development needs in the civil engineering field. Its mechanical behaviour and properties have been identified from the experimental works. However, it is necessary for a numerical approach to consider the effect of the parameters on TRC's behaviour with lower analysis duration and cost related to the experiment. This paper presents obtained results of the numerical modelling for TRC composite using the cracking model for the cementitious matrix in TRC. As a result, the TRC composite exhibited a strain-hardening behaviour with the cracking phase characterized by the drops in tensile stress on the stress-strain curve. This model also showed the failure mode by multi-cracking on the TRC specimen surface. Furthermore, the parametric studies showed the effect of several parameters on the TRC tensile behaviour, as the reinforcement ratio, the length and position of the deformation measurement zone, and elevated temperatures. These numerical results were compared with the experiment and showed a remarkable agreement for all cases of this study.

Performance analysis of a detailed FE modelling strategy to simulate the behaviour of masonry-infilled RC frames under cyclic loading

  • Mohamed, Hossameldeen M.;Romao, Xavier
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.551-565
    • /
    • 2018
  • Experimental testing is considered the most realistic approach to obtain a detailed representation of the nonlinear behaviour of masonry-infilled reinforced concrete (RC) structures. Among other applications, these tests can be used to calibrate the properties of numerical models such as simplified macro-models (e.g., strut-type models) representing the masonry infill behaviour. Since the significant cost of experimental tests limits their widespread use, alternative approaches need to be established to obtain adequate data to validate the referred simplified models. The proposed paper introduces a detailed finite element modelling strategy that can be used as an alternative to experimental tests to represent the behaviour of masonry-infilled RC frames under earthquake loading. Several examples of RC infilled frames with different infill configurations and properties subjected to cyclic loading are analysed using the proposed modelling approach. The comparison between numerical and experimental results shows that the numerical models capture the overall nonlinear behaviour of the physical specimens with adequate accuracy, predicting their monotonic stiffness, strength and several failure mechanisms.

Numerical modelling of the damaging behaviour of the reinforced concrete structures by multi-layers beams elements

  • Mourad, Khebizi;mohamed, Guenfoud
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.547-562
    • /
    • 2015
  • A two-dimensional multi-layered finite elements modeling of reinforced concrete structures at non-linear behaviour under monotonic and cyclical loading is presented. The non-linearity material is characterized by several phenomena such as: the physical non-linearity of the concrete and steels materials, the behaviour of cracked concrete and the interaction effect between materials represented by the post-cracking filled. These parameters are taken into consideration in this paper to examine the response of the reinforced concrete structures at the non-linear behaviour. Four examples of application are presented. The numerical results obtained, are in a very good agreement with available experimental data and other numerical models of the literature.

Ultimate behaviour and rotation capacity of stainless steel end-plate connections

  • Song, Yuchen;Uy, Brian;Li, Dongxu;Wang, Jia
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.569-590
    • /
    • 2022
  • This paper presents a combined experimental and numerical study on stainless steel end-plate connections, with an emphasis placed on their ultimate behaviour and rotation capacity. In the experimental phase, six connection specimens made of austenitic and lean duplex stainless steels are tested under monotonic loads. The tests are specifically designed to examine the close-to-failure behaviour of the connections at large deformations. It is observed that the rotation capacity is closely related to fractures of the stainless steel bolts and end-plates. In the numerical phase, an advanced finite element model suitable for fracture simulation is developed. The incorporated constitutive and fracture models are calibrated based on the material tests of stainless steel bolts and plates. The developed finite element model exhibits a satisfactory accuracy in predicting the close-to-failure behaviour of the tested connections. Finally, the moment resistance and rotation capacity of stainless steel end-plate connections are assessed based on the experimental tests and numerical analyses.

Experimental and numerical studies on concrete encased embossments of steel strips under shear action for composite slabs with profiled steel decking

  • Seres, Noemi;Dunai, Laszlo
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.39-58
    • /
    • 2011
  • The subject of the ongoing research work is to analyze the composite action of the structural elements of composite slabs with profiled steel decking by experimental and numerical studies. The mechanical and frictional interlocks result in a complex behaviour and failure under horizontal shear action. This is why the design characteristics can be determined only by standardized experiments. The aim of the current research is to develop a computational method which can predict the behaviour of embossed mechanical bond under shear actions, in order to derive the design characteristics of composite slabs with profiled steel decking. In the first phase of the research a novel experimental analysis is completed on an individual concrete encased embossment of steel strip under shear action. The experimental behaviour modes and failure mechanisms are determined. In parallel with the tests a finite element model is developed to follow the ultimate behaviour of this type of embossment, assuming that the phenomenon is governed by the failure of the steel part. The model is verified and applied to analyse the effect of embossment's parameters on the behaviour. In the extended investigation different friction coefficients, plate thicknesses, heights and the size effects are studied. On the basis of the results the tendencies of the ultimate behaviour and resistance by the studied embossment's characteristics are concluded.

Employing a fiber-based finite-length plastic hinge model for representing the cyclic and seismic behaviour of hollow steel columns

  • Farahi, Mojtaba;Erfani, Saeed
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.501-516
    • /
    • 2017
  • Numerical simulations are prevalently used to evaluate the seismic behaviour of structures. The accuracy of the simulation results depends directly on the accuracy of the modelling techniques employed to simulate the behaviour of individual structural members. An empirical modelling technique is employed in this paper to simulate the behaviour of column members under cyclic and seismic loading. Despite the common modelling techniques, this technique is capable of simulating two important aspects of the cyclic and seismic behaviour of columns simultaneously. The proposed fiber-based modelling technique captures explicitly the interaction between the bending moment and the axial force in columns, and the cyclic deterioration of the hysteretic behaviour of these members is implicitly taken into account. The fiber-based model is calibrated based on the cyclic behaviour of square hollow steel sections. The behaviour of several column archetypes is investigated under a dual cyclic loading protocol to develop a benchmark database before the calibration procedure. The dual loading protocol used in this study consists of both axial and lateral loading cycles with varying amplitudes. After the calibration procedure, a regression analysis is conducted to derive an equation for predicting a varying calibrated modelling parameter. Finally, several nonlinear time-history analyses are conducted on a 6-story steel special moment frame in order to investigate how the results of numerical simulations can be affected by employing the intended modelling technique for columns instead of other common modelling techniques.

Finite-element modeling of a light-framed wood roof structure

  • Jacklin, Ryan B.;El Damatty, Ashraf A.;Dessouki, Ahmed A.
    • Wind and Structures
    • /
    • v.19 no.6
    • /
    • pp.603-621
    • /
    • 2014
  • Past high speed wind events have exposed the vulnerability of the roof systems of existing light-framed wood structures to uplift loading, contributing greatly to economic and human loss. This paper further investigates the behaviour of light-framed wood structures under the uplift loading of a realistic pressure distribution. A three-dimensional finite-element model is first developed to capture the behaviour of a recently completed full-scale experiment. After describing the components used to develop the numerical model, a comparison between the numerical prediction and experimental results in terms of the deflected shape at the roof-to-wall connections is presented to gain confidence in the numerical model. The model is then used to analyze the behaviour of the truss system under realistic and equivalent uniform pressure distributions and to perform an assessment of the use of the tributary area method to calculate the withdrawal force acting on the roof-to-wall connections.