• Title/Summary/Keyword: Numeric Character Segmentation

Search Result 3, Processing Time 0.02 seconds

An Efficient Numeric Character Segmentation of Metering Devices for Remote Automatic Meter Reading (원격 자동 검침을 위한 효과적인 계량기 숫자 분할)

  • Toan, Vo Van;Chung, Sun-Tae;Cho, Seong-Won
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.737-747
    • /
    • 2012
  • Recently, in order to support automatic meter reading for conventional metering devices, an image processing-based approach of recognizing the number meter data in the captured meter images has attracted many researchers' interests. Numerical character segmentation is a very critical process for successful recognition. In this paper, we propose an efficient numeric character segmentation method which can segment numeric characters well for any metering device types under diverse illumination environments. The proposed method consists of two consecutive stages; detection of number area containing all numbers as a tight ROI(Region of Interest) and segmentation of numerical characters in the ROI. Detection of tight ROI is achieved in two steps: extraction of rough ROI by utilizing horizontal line segments after illumination enhancement preprocessing, and making the rough ROI more tight through clipping utilizing vertical and horizontal projection about binarized ROI. Numerical character segmentation in the detected ROI is stably achieved in two processes of 'vertical segmentation of each number region' and 'number segmentation in the each vertical segmented number region'. Through the experiments about a homegrown meter image database containing various meter type images of low contrast, low intensity, shadow, and saturation, it is shown that the proposed numeric character segmentation method performs effectively well for any metering device types under diverse illumination environments.

Meter Numeric Character Recognition Using Illumination Normalization and Hybrid Classifier (조명 정규화 및 하이브리드 분류기를 이용한 계량기 숫자 인식)

  • Oh, Hangul;Cho, Seongwon;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.71-77
    • /
    • 2014
  • In this paper, we propose an improved numeric character recognition method which can recognize numeric characters well under low-illuminated and shade-illuminated environment. The LN(Local Normalization) preprocessing method is used in order to enhance low-illuminated and shade-illuminated image quality. The reading area is detected using line segment information extracted from the illumination-normalized meter images, and then the three-phase procedures are performed for segmentation of numeric characters in the reading area. Finally, an efficient hybrid classifier is used to classify the segmented numeric characters. The proposed numeric character classifier is a combination of multi-layered feedforward neural network and template matching module. Robust heuristic rules are applied to classify the numeric characters. Experiments using meter image database were conducted. Meter image database was made using various kinds of meters under low-illuminated and shade-illuminated environment. The experimental results indicates the superiority of the proposed numeric character recognition method.

Detecting Numeric and Character Areas of Low-quality License Plate Images using YOLOv4 Algorithm (YOLOv4 알고리즘을 이용한 저품질 자동차 번호판 영상의 숫자 및 문자영역 검출)

  • Lee, Jeonghwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2022
  • Recently, research on license plate recognition, which is a core technology of an intelligent transportation system(ITS), is being actively conducted. In this paper, we propose a method to extract numbers and characters from low-quality license plate images by applying the YOLOv4 algorithm. YOLOv4 is a one-stage object detection method using convolution neural network including BACKBONE, NECK, and HEAD parts. It is a method of detecting objects in real time rather than the previous two-stage object detection method such as the faster R-CNN. In this paper, we studied a method to directly extract number and character regions from low-quality license plate images without additional edge detection and image segmentation processes. In order to evaluate the performance of the proposed method we experimented with 500 license plate images. In this experiment, 350 images were used for training and the remaining 150 images were used for the testing process. Computer simulations show that the mean average precision of detecting number and character regions on vehicle license plates was about 93.8%.