• Title/Summary/Keyword: Numercial prediction

Search Result 3, Processing Time 0.015 seconds

Prediction of Off-line Type Pulse Air Jet Bag Filter Reflection Distance (간헐탈진형 충격기류식 여과집진장치의 여과포 반사거리 예측)

  • Jeong-Sam Son;Yong-Hyun Chung;Jeong-Min Suh
    • Journal of Environmental Science International
    • /
    • v.32 no.11
    • /
    • pp.801-809
    • /
    • 2023
  • The purpose of this study is to predict the reflection distance following to the pulsing pressure, total air supplying, filter bag size using numercial analysis techniques and use it as an efficient operation condition and economic data for off-line type pulse air jet bag filter. In this research, filtration area 6 m2 condition, calculate filter resistance coefficient for simulation through the main experiments using coke dust. Ansys fluent V19.0 apply to CFD simulation, and analysis pulsing characteristics about pulsing pressure, filtration velocity and nozzle diameter. The maximum reflecting distance of off-line type pulse air jet bag filter is 1,000 mm regardless of total air supplying at over the 42 L/m2 conditions, that indicates off-line type can extend filter bag length 1,000 mm than on-line type. In order to effective primary and secondary pulsing of off-line type pulse air jet bag filter, over the 5 bar of pulsing pressure and over the 42 L/m2 of total air supplying are needed.

Evaluation of Energy Production for a Small Wind Turbine by Considering the Geometric Shape of the Deokjeok-Do Island (덕적도 지형을 고려한 소형풍력발전기 발전량 평가)

  • Jang, Choon-Man;Lee, Sang-Moon;Jeon, Wan-Ho;Lim, Tae-Gyun
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.629-635
    • /
    • 2014
  • This paper presents annual energy production (AEP) by a 1.5kW wind turbine due to be installed in Deokjeok-Do island. Local wind data is determined by geometric shape of Deokjeok-Do island and annual wind data from Korea Institute of Energy Research at three places considered to be installed the wind turbine. Numerical simulation using WindSim is performed to obtain flow pattern for the whole island. The length of each computation grid is 40 m, and k-e turbulence model is imposed. AEP is determined by the power curve of the wind turbine and the local wind data obtained from numerical simulation. To capture the more detailed flow pattern at the specific local region, Urumsil-maul inside the island, fine mesh having the grid length of 10m is evaluated. It is noted that the input data for numerical simulation to the local region is used the wind data obtained by the numerical results for the whole island. From the numerical analysis, it is found that a local AEP at the Urumsil-maul has almost same value of 1.72 MWh regardless the grid resolutions used in the present calculation. It is noted that relatively fine mesh used for local region is effective to understand the flow pattern clearly.

A Study on Prediction of On-line Type Pulse Air Jet Bag Filter Effective Pulsing Distance (연속탈진형 충격기류식 여과집진장치의 여과포 유효탈진거리 예측)

  • Jeong-Sam Son;Jeong-Min Suh;Jeong-Ho Park
    • Journal of Environmental Science International
    • /
    • v.32 no.8
    • /
    • pp.555-561
    • /
    • 2023
  • A study is to predict the effective pulsing distance following to the pulsing pressure, nozzle diameter, filtration velocity using numercial analysis techniques and use it as an efficient operation condition and economic data for on-line type pulse air jet bag filter. Filtration area 6 m2 condition, calculate filter resistance coefficient for simulation through the primary experiments using coke dust. For CFD simulation, analysis pulsing characteristics about nozzle diameter, filtration velocity and pulsing pressure. The maximum pulsing length of on-line type pulse air jet bag filter, in 10mm nozzle, filtration velocity 1.5m/min and pulsing pressure 5 bar conditions, is 2,285 mm, maximum length is 76.2% of the total filter bag, which is sufficient to pulsing. In 12mm nozzle, pulsing pressure 5 bar and filtration area 1.22 m2 conditions, the maximum pulsing length of on-line type pulse air jet bag filter is 1,744~2,952 mm, and the maximum length is 2,952 mm indicates pulsing air can be reached to the bottom of filter bag. When the nozzle diameter is increased 8mm to 10mm, maximum pulsing length is extended 40~47%, and increased 10mm to 12 mm, maximum pulsing length is extended 10~17%. For effective pulsing, over the 5bar of pulsing pressure and larger than 10 mm of nozzle diameter are required.