• Title/Summary/Keyword: Numbers of layers

Search Result 164, Processing Time 0.025 seconds

Simulation of the tensile failure behaviour of transversally bedding layers using PFC2D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.493-504
    • /
    • 2018
  • In this paper, the tensile failure behaviour of transversally bedding layers was numerically simulated by using particle flow code in two dimensions. Firstly, numerical model was calibrated by uniaxial, Brazilian and triaxial experimental results to ensure the conformity of the simulated numerical model's response. Secondly, 21 circular models with diameter of 54 mm were built. Each model contains two transversely bedding layers. The first bedding layer has low mechanical properties, less than mechanical properties of intact material, and second bedding layer has high mechanical properties, more than mechanical properties of intact material. The angle of first bedding layer, with weak mechanical properties, related to loading direction was $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$ while the angle of second layer, with high mechanical properties, related to loading direction was $90^{\circ}$, $105^{\circ}$, $120^{\circ}$, $135^{\circ}$, $150^{\circ}$, $160^{\circ}$ and $180^{\circ}$. Is to be note that the angle between bedding layer was $90^{\circ}$ in all bedding configurations. Also, three different pairs of the thickness was chosen in models; i.e., 5 mm/10 mm, 10 mm/10 mm and 20 mm/10 mm. The result shows that In all configurations, shear cracks develop between the weaker bedding layers. Shear cracks angel related to normal load change from $0^{\circ}$ to $90^{\circ}$ with increment of $15^{\circ}$. Numbers of shear cracks are constant by increasing the bedding thickness. It's to be note that in some configuration, tensile cracks develop through the intact area of material model. There is not any failure in direction of bedding plane interface with higher strength.

Stiffness Modulus Comparison in Trackbed Foundation Soil

  • Kim, Daesung;Cho, Hojin;Park, Jaebeom;Lim, Yujin
    • International Journal of Railway
    • /
    • v.8 no.2
    • /
    • pp.50-54
    • /
    • 2015
  • The primary function of the trackbed in a conventional railway track system is to decrease the stresses in the subgrade to be in an acceptable level. A properly designed trackbed layer performs this task adequately. Many design procedures have used assumed and/or are based on critical stiffness values of the layers obtained mostly in the field to calculate an appropriate thickness of the sublayers of the trackbed foundation. However, those stiffness values do not consider strain levels clearly and precisely in the layers. This study proposes a method of computation of stiffness that can handle with strain level in the layers of the trackbed foundation in order to provide properly selected design values of the stiffness of the layers. The shear modulus values are dependent on shear strain level so that the strain levels generated in the subgrade in the trackbed under wheel loading and below plate of Repeated Plate Bearing Test (RPBT) are investigated by finite element analysis program ABAQUS and PLAXIS programs. The strain levels generated in the subgrade from RPBT are compared to those values from RC (Resonant Column) test after some consideration of strain levels and stress consideration. For comparison of shear modulus G obtained from RC test and stiffness moduli $E_{v2}$ obtained from RPBT in the field, many numbers of mid-size RC tests in laboratory and RPBT in field were performed extensively. It was found in this study that there is a big difference in stiffness modulus when the converted $E_{v2}$ values were compared to those values of RC test. It is verified in this study that it is necessary to use precise and increased loading steps to construct nonlinear curves from RPBT in order to get correct $E_{v2}$ values in proper strain levels.

Cultivation of Poria cocos using plastic bag method I-effect of temperature and number of plastic bag layers (비닐봉지 재배에 의한 복령 생산 I-환경온도 및 비닐 겹수의 영향)

  • Yang, Seong Baek;Lee, Hyun Ji;Sohn, Hyeong Rack;Jeon, Seon Man;Jang, Hae Wook;Yeum, Jeong Hyun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.33 no.2
    • /
    • pp.37-40
    • /
    • 2015
  • Poria cocos is an edible and pharmaceutical mushroom with a long history of medicinal use in Korea. For the last 30 years, the domestic cultivated supply of Poria cocos has been unable to meet consumer demand, so Poria cocos is collected in mountainous areas and also imported from China. Thus, to increase the supply of Poria cocos, many artificial cultivation methods have been studied. In this study, Poria cocos is cultivated under different environmental conditions using plastic bags and the results compared. When cultivating Poria cocos at different temperatures (20, 25, 30 and $35^{\circ}C$) and using different numbers of plastic bag layers (1, 2), the most efficient cultivation conditions were a temperature of $25-30^{\circ}C$ and 2 plastic bag layers. The fastest growth was at $25-30^{\circ}C$, and the Poria cocos exhibited no weight change when cultivated using layers of plastic bags (1, 2).

Dispersion Stability Determination of Saengshik Beverage by Optical Methods (광학적 방법에 의한 생식음료의 분산 안정성 측정)

  • Lee, Ju-Yeon;Mok, Chulkyoon
    • Food Engineering Progress
    • /
    • v.14 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • An optical method was introduced to investigate the dispersion stability of Saengshik beverages (SB) containing 3.7-11.7% Saengshik powder (SP). Time course changes in backscattering light flux (BSLF) from SB were monitored by a Turbiscan. BSLF in the bottom and top layers of SB increased by forming sediment and foam, respectively, while that in the middle layer decreased by clarifying. With SP levels, sedimentation in SB was retarded, but the height of total sedimentation layer was increased. A logarithmic model was developed to fit to the changes in BSLF with time, showing determination coefficients of 0.979-0.988. The levels of SP in SB influenced the migration speed of the clarification front as well as the numbers of separated layers; 2 layers in SB containing 3.7% SP, 3 in 5.7-9.7%, and 4 in 11.7%. Formation of clear layers started after 17-29 min and continued for 22-53 min. The clarification was retarded most in SB containing 7.7% SP, indicating the most stable SP level for the SB preparation.

Prediction of Blank Thickness Variation in a Deep Drawing Process Using Deep Neural Network (심층 신경망 기반 딥 드로잉 공정 블랭크 두께 변화율 예측)

  • Park, K.T.;Park, J.W.;Kwak, M.J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • The finite element method has been widely applied in the sheet metal forming process. However, the finite element method is computationally expensive and time consuming. In order to tackle this problem, surrogate modeling methods have been proposed. An artificial neural network (ANN) is one such surrogate model and has been well studied over the past decades. However, when it comes to ANN with two or more layers, so called deep neural networks (DNN), there is distinct a lack of research. We chose to use DNNs our surrogate model to predict the behavior of sheet metal in the deep drawing process. Thickness variation is selected as an output of the DNN in order to evaluate workpiece feasibility. Input variables of the DNN are radius of die, die corner and blank holder force. Finite element analysis was conducted to obtain data for surrogate model construction and testing. Sampling points were determined by full factorial, latin hyper cube and monte carlo methods. We investigated the performance of the DNN according to its structure, number of nodes and number of layers, then it was compared with a radial basis function surrogate model using various sampling methods and numbers. The results show that our DNN could be used as an efficient surrogate model for the deep drawing process.

Investigation of gamma radiation shielding properties of polyethylene glycol in the energy range from 8.67 to 23.19 keV

  • Akhdar, H.;Marashdeh, M.W.;AlAqeel, M.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.701-708
    • /
    • 2022
  • The mass attenuation coefficients (μm) of polyethylene glycol (PEG) of different molecular weights (1000-200,000) were measured using single-beam photon transmission. The X-ray fluorescent (XRF) photons from Zinc (Zn), Zirconium (Zr), Molybdenum (Mo), Silver (Ag) and Cadmium (Cd) targets were used to determine the attenuation of gamma radiation of energy range between 8.67 and 23.19 keV in PEG samples. The results were compared to theoretical values using XCOM and Monte Carlo simulation using Geant4 toolkit which was developed to validate the experiment at those certain energies. The mass attenuation coefficients were then used to compute the effective atomic numbers, electron density and half value layers for the studied samples. The outcomes showed good agreement between experimental and simulated results with those calculated theoretically by XCOM within 5% deviation. The PEG 1000 sample showed slightly higher μm value compared with the other samples. The dependence of the photon energy and PEG composition on the values of μm and HVL were investigated and discussed. In addition, the values of Zeff and Neff for all PEG samples behaved similarly in the given photon energy range, and they decreased as the photon energy increased.

Structural Design of Multi-Megawatt Wind Turbine Blade by Classical Lamination Theory (복합재료 고전적층판 이론을 이용한 MW급 해상풍력 블레이드 구조설계)

  • Bae, Sung-Youl;Kim, Bum-Suk;Lee, Sang-Lae;Kim, Woo-June;Kim, Yun-Hae
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.147-151
    • /
    • 2014
  • This research presents a method for the initial structural design of a multi-megawatt wind turbine blade. The structural data for a 2-MW blade were applied as the blade structural characteristic data of the reference blade. Tenkinds of blade models were newly designed by replacing the spar cap axial GRRP with a GFRP and CFRP These terms should be defined. at different orientations. The axial stiffness coefficients of the newly designed models were made equal to the coefficient of the reference blade. The required numbers of layers in each section of blades were calculated, and the lay-up designs were based on these numbers. Verification results showed that the design method that used the structural data of the reference blade was appropriate for the initial structural design of a wind turbine blade.

Prediction of Asphalt Pavement Service Life using Deep Learning (딥러닝을 활용한 일반국도 아스팔트포장의 공용수명 예측)

  • Choi, Seunghyun;Do, Myungsik
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.57-65
    • /
    • 2018
  • PURPOSES : The study aims to predict the service life of national highway asphalt pavements through deep learning methods by using maintenance history data of the National Highway Pavement Management System. METHODS : For the configuration of a deep learning network, this study used Tensorflow 1.5, an open source program which has excellent usability among deep learning frameworks. For the analysis, nine variables of cumulative annual average daily traffic, cumulative equivalent single axle loads, maintenance layer, surface, base, subbase, anti-frost layer, structural number of pavement, and region were selected as input data, while service life was chosen to construct the input layer and output layers as output data. Additionally, for scenario analysis, in this study, a model was formed with four different numbers of 1, 2, 4, and 8 hidden layers and a simulation analysis was performed according to the applicability of the over fitting resolution algorithm. RESULTS : The results of the analysis have shown that regardless of the number of hidden layers, when an over fitting resolution algorithm, such as dropout, is applied, the prediction capability is improved as the coefficient of determination ($R^2$) of the test data increases. Furthermore, the result of the sensitivity analysis of the applicability of region variables demonstrates that estimating service life requires sufficient consideration of regional characteristics as $R^2$ had a maximum of between 0.73 and 0.84, when regional variables where taken into consideration. CONCLUSIONS : As a result, this study proposes that it is possible to precisely predict the service life of national highway pavement sections with the consideration of traffic, pavement thickness, and regional factors and concludes that the use of the prediction of service life is fundamental data in decision making within pavement management systems.

Effect of transversely bedding layer on the biaxial failure mechanism of brittle materials

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Moosavi, Ehsan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • The biaxial failure mechanism of transversally bedding concrete layers was numerically simulated using a sophisticated two-dimensional discrete element method (DEM) implemented in the particle flow code (PFC2D). This numerical modelling code was first calibrated by uniaxial compression and Brazilian testing results to ensure the conformity of the simulated numerical model's response. Secondly, 21 rectangular models with dimension of $54mm{\times}108mm$ were built. Each model contains two transversely bedding layers. The first bedding layer has low mechanical properties, less than mechanical properties of intact material, and second bedding layer has high mechanical properties, more than mechanical properties of intact material. The angle of first bedding layer, with weak mechanical properties, related to loading direction was $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$ while the angle of second layer, with high mechanical properties, related to loading direction was $90^{\circ}$, $105^{\circ}$, $120^{\circ}$, $135^{\circ}$, $150^{\circ}$, $160^{\circ}$ and $180^{\circ}$. Is to be note that the angle between bedding layer was $90^{\circ}$ in all bedding configurations. Also, three different pairs of the thickness were chosen in models, i.e., 5 mm/10 mm, 10 mm/10 mm and 20 mm/10 mm. The result shows that in all configurations, shear cracks develop between the weaker bedding layers. Shear cracks angel related to normal load change from $0^{\circ}$ to $90^{\circ}$ with increment of $15^{\circ}$. Numbers of shear cracks are constant by increasing the bedding thickness. It's to be noted that in some configuration, tensile cracks develop through the intact area of material model. There is not any failure in direction of bedding plane interface with higher strength.

Fruit wall anatomy of the genus Krigia (Asteraceae, Lactuceae) and their taxonomic implications (Krigia속의 과피의 해부학적 구조와 분류학적 의미)

  • Lee, Bok Won;Park, Ji Kuk;Pak, Jae-Hong
    • Korean Journal of Plant Taxonomy
    • /
    • v.34 no.4
    • /
    • pp.321-333
    • /
    • 2004
  • We researched fruit wall anatomical characters about the seven taxa of Krigia and the nearest one relative, Nothocalais cuspidata by making use of the fruit wall anatomy, and inferred systematical similarity. Among these characters, all species of the genus Krigia has identical characters in the shape of fruit and the number of rib, but showed specific differences in the shape of costa, the numbers of libriform fiber cell layers and fiber-sclereid cell layers in mesocarp, and development degree in these characters. Krigia biflora, K. cespitosa, K. occidentalis and K. wrightii have well developed libriform fiber cell, but K. dandelion, K. montana and K. virginica have undeveloped libriform fiber cell, and mostly consist of fiber-sclereid cell layers. According to the fruit wall anatomical characters, K. biflora which belonged to sect. Krigia in the previous classification system is more similar to sect. Cymbia than sect. Krigia.