• Title/Summary/Keyword: Number of pass

Search Result 447, Processing Time 0.026 seconds

A Study of Multiple Dynamic Programming (Multiple dynamic programming에 관한 연구)

  • Young Moon park
    • 전기의세계
    • /
    • v.21 no.1
    • /
    • pp.13-16
    • /
    • 1972
  • Dynamic Programming is regarded as a very powerful tool for solving nonlinear optimization problem subject to a number of constraints of state and control variables, but has definite disadvantages that it requires much more computing time and consumes much more memory spaces than other technigues. In order to eliminate the above-mentioned demerits, this paper suggests a news technique called Multiple Dynamic Programming. The underlying principles are based on the concept of multiple passes that, instead of forming fin lattices in time-state plane as adopted in the conventional Dynamic Programming, the Multiple Dynamic Programming constitutes, at the first pass, coarse lattices in the feasible domain of time-state plane and determines the optimal state trajectory by the usual method of Dynamic Programming, and at the second pass again constitutes finer lattices in the narrower domain surrounded by both the upperand lower edges next to the lattice edges through which the first pass optimal trajectory passes and determines the more accurate optimal trajectory of state, and then at the third pass repeats the same processes, and so on. The suggested technique insures remarkable curtailment in amounts of computer memory spaces and conputing time, and its applicability has been demonstrated by a case study on the hydro-thermal power coordination in Korean power system.

  • PDF

A Bandpass Filter with a Desired Phase Shift at The Center Frequency (중심주파수에서 원하는 위상변위가 가능한 대역통과 필터)

  • Kim, Hong-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.998-1000
    • /
    • 2012
  • By cascading RHTL (Right-Handed Transmission Line) and LHTL (Left-Handed Transmission Line), we fabricated a BPF (Band Pass Filter) in which the phase propagation at the pass band center frequency is fixed as we want. We utilized a positive phase propagation of a RHTL which is a form of LPF (Low Pass Filter) and negative phase propagation of LHTL which is a form of HPF (High Pass Filter). Therefore, if RHTL and LHTL are cascaded, a BPF can be constructed and the phase propagation inside the passband is decided by the number of RHTLs and LHTLs. In this paper, we provide a detailed theory related to it and proved the theory with an actual experiment. In the experiment, we fabricated two BPFs with similar passband. One with $90^{\circ}$ phase shift and the other with $-90^{\circ}$ phase shift at the center of passband. The result of simulation and actual experiment agrees well. This proves the suggested theory is correct and feasible.

Optimization of a Rotating Two-Pass Rectangular Cooling Channel with Staggered Arrays of Pin-Fins (곡관부 하류에 핀휜이 부착된 회전 냉각유로의 최적설계)

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.43-53
    • /
    • 2010
  • This study investigates a design optimization of a rotating two-pass rectangular cooling channel with staggered arrays of pin-fins. The radial basis neural network method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The ratio of the diameter to height of the pin-fins and the ratio of the streamwise spacing between the pin-fins to height of the pin-fin are selected as design variables. The optimization problem has been defined as a minimization of the objective function, which is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. Results are presented for streamlines, velocity vector fields, and contours of Nusselt numbers, friction coefficients, and turbulent kinetic energy. These results show how fluid flow in a two-pass square cooling channel evolves a converted secondary flows due to Coriolis force, staggered arrays of pin-fins, and a $180^{\circ}$ turn region. These results describe how the fluid flow affects surface heat transfer. The Coriolis force induces heat transfer discrepancy between leading and trailing surfaces, having higher Nusselt number on the leading surface in the second pass while having lower Nusselt number on the trailing surface. Dean vortices generated in $180^{\circ}$ turn region augment heat transfer in the turning region and in the upstream region of the second pass. As the result of optimization, in comparison with the reference geometry, thermal performance of the optimum geometry shows the improvement by 30.5%. Through the optimization, the diameter of pin-fin increased by 14.9% and the streamwise distance between pin-fins increased by 32.1%. And, the value of objective function decreased by 18.1%.

Dynamic Deformation Behavior of Ultra-Fine-Grained Pure Coppers Fabricated by Equal Channel Angular Pressing (ECAP으로 제조된 초미세립 순동의 동적 변형거동)

  • Kim, Yang Gon;Hwang, Byoungchul;Lee, Sunghak;Lee, Chul Won;Shin, Dong Hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.545-553
    • /
    • 2008
  • Dynamic deformation behavior of ultra-fine-grained pure coppers fabricated by equal channel angular pressing (ECAP) was investigated in this study. Dynamic torsional tests were conducted on four copper specimens using a torsional Kolsky bar, and then the test data were analyzed by their microstructures and tensile properties. The 1-pass ECAP'ed specimen consisted of fine dislocation cell structures elongated along the ECAP direction, which were changed to very fine, equiaxed subgrains of 300~400 nm in size as the pass number increased. The dynamic torsional test results indicated that maximum shear stress increased with increasing ECAP pass number. Adiabatic shear bands were not found at the gage center of the dynamically deformed torsional specimen of the 1- or 4-pass ECAP'ed specimen, while some weak bands were observed in the 8-pass ECAP'ed specimen. These findings suggested that the grain refinement according to the ECAP was very effective in strengthening of pure coppers, and that ECAP'ed coppers could be used without serious reduction in fracture resistance under dynamic torsional loading as adiabatic shear bands were hardly formed.

Modeling of Welding Heat Input for Residual Stress Analysis (용접 잔류응력 해석을 위한 Heat Input Model 개발)

  • 심용래;이성근
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.34-47
    • /
    • 1993
  • Finite element models were developed for thermal and residual stress analysis for the specific welding problems. They were used to evaluate the effectiveness of the various welding heat input models, such as ramp heat input function and lumped pass models. Through the parametric studies, thermal-mechanical modeling sensitivity to the ramp function and lumping techniques was determined by comparing the predicted results with experimental data. The kinetics for residual stress formation during welding can be developed by iteration of various proposed mechanisms in the parametric study. A ramp heat input function was developed to gradually apply the heat flux with variable amplitude to the model. This model was used to avoid numerical convergence problems due to an instantaneous increase in temperature near the fusion zone. Additionally, it enables the model to include the effect of a moving arc in a two-dimensional plane. The ramp function takes into account the variation in the out of plane energy flow in a 2-D model as the arc approaches, travels across, and departs from each plane under investigation. A lumped pass model was developed to reduce the computation cost in the analysis of multipass welds. Several weld passes were assumed as one lumped pass in this model. Recommendations were provided about ramp lumping techniques and the optimum number of weld passes that can be combined into a single thermal input.

  • PDF

Effect of Sulfur Contents and Welding Thermal Cycles on Reheat Cracking Susceptibility in Multi-pass Weld Metal of Fe-36%Ni Alloy

  • Mori, Hiroaki;Nishimoto, Kazutoshi
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.377-379
    • /
    • 2005
  • This study has been conducted to clarify the effect of sulfur content and welding thermal cycles on reheat cracking susceptibility in the multi-pass weld metal of Fe-36%Ni alloy. Reheat cracking occurred in the preceding weld pass reheated by subsequent passes. Microscopic observations showed that reheat cracking propagated along grain boundaries which resulted in intergranular brittle fractures. The region where reheat cracking occurred and the number of cracks increased with the increase in sulfur content of the alloys. These experimental results suggested that reheat cracking was associated with the embrittlement of grain boundaries, which was promoted by sulfur and subsequent welding thermal cycles. AES analysis indicated that the sulfur segregation occurred at grain boundaries in the reheated weld metal. On the basis of these results, the cause of reheat cracking in multi-pass welding can be attributed to hot ductility loss of weld metals due to sulfur segregation which was accelerated by the reheating with multi-pass welding thermal cycles.

  • PDF

Process Design of Multi-Pass Shape Drawing of Wire with Asymmetric Trapezoid Profiles (비대칭 사다리꼴 단면 선재의 다단 인발 공정설계)

  • Ji, S.I.;Lee, K.H.;Hong, L.S.;Jung, J.Y.;Kim, J.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.187-193
    • /
    • 2015
  • The objective of the current study is to determine cross-sectional profile of intermediate dies in order to improve the plastic strain homogeneity which directly affects not only the dimensional accuracy but also the mechanical properties of final product by redesigning the intermediate dies using the conventional electric field analysis (EFA) method. Initially, the multi-pass shape wire drawing was designed by using the equivalent potential lines from EFA. The area reduction ratio was calculated from the number of passes in multi-pass shape wire drawing but constrained by the capacity of the drawing machine and the drawing force. In order to compensate for a concentration of strain in a region of the cross section of the wire, the process for multi pass wire drawing from initial round material to an intermediate die was redesigned again using the electric field analysis. Both drawing process designs were simulated by the finite element method in which the strain distribution and standard deviation plastic strain of the cross section of drawn wires were examined.

Face recognition using Wavelets and Fuzzy C-Means clustering (웨이블렛과 퍼지 C-Means 클러스터링을 이용한 얼굴 인식)

  • 윤창용;박정호;박민용
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.583-586
    • /
    • 1999
  • In this paper, the wavelet transform is performed in the input 256$\times$256 color image and decomposes a image into low-pass and high-pass components. Since the high-pass band contains the components of three directions, edges are detected by combining three parts. After finding the position of face using the histogram of the edge component, a face region in low-pass band is cut off. Since RGB color image is sensitively affected by luminances, the image of low pass component is normalized, and a facial region is detected using face color informations. As the wavelet transform decomposes the detected face region into three layer, the dimension of input image is reduced. In this paper, we use the 3000 images of 10 persons, and KL transform is applied in order to classify face vectors effectively. FCM(Fuzzy C-Means) algorithm classifies face vectors with similar features into the same cluster. In this case, the number of cluster is equal to that of person, and the mean vector of each cluster is used as a codebook. We verify the system performance of the proposed algorithm by the experiments. The recognition rates of learning images and testing image is computed using correlation coefficient and Euclidean distance.

  • PDF

A by-pass rainwater penetration sewer system for urban flooding mitigation (도시침수 저감을 위한 by-pass 빗물침투성 우수관거)

  • Lee, Bum-Sub;Ko, Keon-Ho;Kang, Ho-Yeong;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.799-807
    • /
    • 2016
  • The aim of this study is to determine and propose the by-pass rainwater sewer system in order to reduce the urban floodplain from the locality heavy rain every year during the dry season and the sinkholes in the city as well as the shortage of groundwaters due to extreme hot weather condition and urban heat island phenomenon. Heavy rain occurs more than the years of heavy rainfall probability, comparison between the place where uses the existing pipes and connect the sewer system with by-pass rain permeability and without expanding sewer pipe replacement at intersection of Gangnam station 3.07 ha at Gangnam-gu, Seoul Metropolitan area, it indicates that average of 27 million KRW (44%) maintenance cost savings and maintain existing sewer system without any other countermeasures. For the city flooded reduction, by-pass rainwater permeable rainwater pipe multiplying the probability the number of years during summer season and increase the water flow capacity during spring and fall when a small amount of rain that, it also contribute to the total amount of underground water secured through the by-pass penetration.

Application of Friction Stir Process to Improve Surface Reliability of Light Weight Magnesium Alloy (경량 마그네슘 합금의 표면 신뢰성 향상을 위한 마찰교반공정의 적용)

  • Gil, Ung-Chan;Kim, Jae-Yeon;Hyun, Chang-Young
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.155-161
    • /
    • 2016
  • Purpose: Purpose of this study is to analyze the effect of particle size as well as number of pass on surface microstructure and hardness of SiC(p)/AZ31 surface composite fabricated by friction stir process (FSP). Method: SiC(p)/AZ31 surface composite containing different size of SiC particle (i. e., $2{\mu}m$ and $8{\mu}m$) was fabricated by multi-pass FSP. Microstructure was observed by scanning electron microscope and surface hardness was determined by Vickers hardness tester. Results: For all the FSPed specimens with and without hardening particles, grain size was refined due to dynamic recrystallization behavior. Surface hardness was observed to increase with decreasing particle size in the composite layer. Increasing number of FSP pass was effective for homogeneous distribution of the hardening particles and for resulting increase in surface hardness. Conclusion: FSP was effective to modify surface microstructure for improving surface hardness of SiC/AZ31 composite.