• Title/Summary/Keyword: Number of blades

Search Result 250, Processing Time 0.025 seconds

NUMERICAL SIMULATION AND VISUALIZATION OF THE FLOW AROUND THE DARIUS WIND TURBINE

  • Lee Mi Young;Kawamura Tetuya
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.45-50
    • /
    • 2005
  • A fundamental understanding of the flow around the wind turbine is important to investigate the performance of new type of wind turbine. This study presents the simulation of three dimensional flow fields around the Darius wind turbine as an example. Incompressible Navier-Stokes equations are used for this simulation. The rotating coordinate system that rotates in the same speed of the turbine is used in order to simplify the boundary condition on the blades. Additionally, the boundary fitted coordinate system is employed in order to express the shape of the blades precisely. Fractional step method is used to solve the basic equations. Third order upwind scheme is chosen for the approximation of the non-linear terms since it can compute the flow field stably even at high Reynolds number without any turbulence models. The flow fields obtained in this study are highly complex due to the three dimensionality and are visualized effectively by using the technique of the computer graphics.

CFD Study on Particle Effect and Erosion in the Axial Compressor Blades and Shroud of Turbomachinery

  • Yoon J.S.;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.233-234
    • /
    • 2003
  • Fly ash enters axial compressor when a turbomachinery is operated in an adverse environment. We have numerically investigated erosion of the blade and shroud in the turbulent compressor passage flow under the influence of gas-particle two-phase interaction. There have appeared quasi-three dimensional calculations on this subject but not the complete three-dimensional gas-particle interaction as done in the present work. Lagrangian particle tracing technique is used on the base of parallel processing for efficient calculation. Accuracy of the present code is tested using the benchmark lPL nozzle. In the DFVLR compressor blades, we have shown that a large number of particles passing through the tip clearance make impact on the blade tip and on the shroud. Higher degree of erosion is resulted by the heavier particles due to the centrifugal force.

  • PDF

Studies on the Growth Characters and Nutrient Uptake Related to Source and Sink by Cool Water Temperature at Reproductive Growth Stage IV. Influence of Growth Characters and Nutrient Uptake of Leaf Blade, Rachis Branches and Chaff by Nitrogen, Phosphate, Potassium and Silicate (생식생장기 냉수온이 벼의 Source와 Sink 관련형질 및 양분흡수에 미치는 연구 IV. 3요소와 규산시용량이 생육 및 엽신. 지경, 영의 양분흡수에 미치는 영향)

  • 최수일;황창주
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.3
    • /
    • pp.326-335
    • /
    • 1986
  • In cold water irrigation, some growth and yield were decreased by heavy application of nitrogen but in-creased by heavy application of phosphate, potassium and silicate. Among growth characters, number of spikelets per panicle and grain filling ratio were affected significantly. Cold damage in number of spikelets, spikelet sterility and degeneration of spikelet and branch could be reduced by increasing application amount of phosphate, potassium and in particular silicate. Number of spikelets per branch was closely related with number of spikelets per secondary branches. Number of abortive grains and immature grains had negative correlations with yield and could be reduced by heavy application of phosphate, potassium and silicate. Heavy nitrogen application led to high total nitrogen content and restrained the uptake of phosphate, potassium and silicate. However, adverse results were showed by heavy application of phosphate, potassium and silicate. Inorganic element contents in branches were lower than those in leaf blades, but higher than those in chaff. Branches showed little differences in inorganic element contents between heading stage and maturing stage. Inorganic element contents in branches were considered to be influenced by those in leaf blades and to affect those in chaff. Some growth characters related to source and sink, such as degeneration of branches and spike-lets, sterility ratio, ripening ratio, and yield had closer relationship with nutrient contents in branches than those in leaf blades and chaff. The results demonstrated that the rachis branch not only was a transport pathway of nutrient but also would play an important role in accumulating substances in panicles.

  • PDF

Computational Study on Particle Effect and Erosion in the Axial Compressor Blades and Shroud

  • Yoon J.S.;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.203-204
    • /
    • 2003
  • Fly ash enters axial compressor when a turbomachinery is operated in an adverse environment. We have numerically investigated erosion of the blade and shroud in the turbulent compressor passage flow under the influence of gas-particle two-phase interaction. There have appeared quasi-three dimensional calculations on this subject but not the complete three-dimensional gas-particle interaction as done in the present work. Lagrangian particle tracing technique is used on the base of parallel processing for efficient calculation. Accuracy of the present code is tested using the benchmark JPL nozzle. In the DFVLR compressor blades, we have shown that a large number of particles passing through the tip clearance make impact on the blade tip and on the shroud. Higher degree of erosion is resulted by the heavier particles due to the centrifugal force.

  • PDF

A Study of Wall Shape Design for Cascade Experiment (케스케이드 실험을 위한 벽면형상 설계에 관한 연구)

  • Cho, Chong-Hyun;Cho, Bong-Soo;Kim, Chae-Sil;Cho, Soo-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.148-151
    • /
    • 2008
  • In a double-passage cascade apparatus, only two blades are installed in order to increase the accuracy of experimental result by applying bigger blade than the size of multi-blades on the same apparatus. However, this causes difficulties to make correct periodic condition. In this study, sidewalls are designed to meet periodic condition without removing the operating fluid or adjusting tail boards. Surface Mach number on the blade surface is applied to a responsible variable, and 12 design variables which are related with sidewall profile control are selected. A gradient based optimization is adopted for wall design and CFX-11 is used for the internal flow computation. The computed result shows that it could obtain the same flow structure by modifying only the sidewalls of the double-passage cascade apparatus.

  • PDF

Dispersion of Organic Phase by Agitation in a n-Hexane/p-TSA Aqueous Solution System (n-헥산/p-TSA 수용액계에서 교반에 의한 유기상의 분산)

  • Kim, Tae-Ok;Chun, Jong-Han
    • Applied Chemistry for Engineering
    • /
    • v.2 no.3
    • /
    • pp.209-215
    • /
    • 1991
  • The effect of agitation on the dispersion of organic phase was investigated in an immiscible liquid system (n-hexane/40 wt % p-TSA aqueous solution). Four different types of six-bladed turbine impellers were used : a flat blade type and three screen blade types. The experimental results showed that the extent of dispersion of organic phase at the same agitation speed was decreased in the order of flat blade, 60 mesh, 40 mesh, and 20 mesh screen blades. Otherwise, it was increased with increasing the concentration of TBA as a surfactant agent and with decreasing volume fraction of organic phase. Also, the minimum agitation speed for a complete dispersion was increased in the order of flat blade, 60 mesh, 40 mesh, and 20 mesh screen blades. However, the minimum power consumption did not vary significantly. In this condition, the relationship between Power number and Reynolds number was expressed as $N_p=a\;N_{Re}{^b}$, where the values of constant a and constant b were ranged 2200~4100 and -0.69~-0.63 respectively.

  • PDF

High Frequency Signal Analysis of LOx Pump for Liquid Rocket Engine under Cavitating Condition (캐비테이션 환경에서의 액체로켓엔진용 산화제펌프의 고주파 신호 분석)

  • Kim, Dae-Jin;Kang, Byung Yun;Choi, Chang-Ho;Bae, Joon-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.61-67
    • /
    • 2018
  • High-frequency signals are analyzed at the inlet/outlet pipeline and pump casing during cavitation tests of the LOx pump for liquid rocket engines. Root-mean square values of all data are investigated with respect to cavitation number. The values of synchronous, harmonic, and cavitation instability frequencies are also calculated. Pressure pulsations of the inlet and outlet pipelines are affected by cavitation instabilities. The 3x component (i.e., the blade-passing frequency of the inducer) is predominant in the outlet pulsation sensor. This seems to be related to the fact that the number of impeller blades is a multiple of the number of the inducer blades. The cavitation instability is also measured at the accelerometer of the pump casing.

Computational study of a small scale vertical axis wind turbine (VAWT): comparative performance of various turbulence models

  • Aresti, Lazaros;Tutar, Mustafa;Chen, Yong;Calay, Rajnish K.
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.647-670
    • /
    • 2013
  • The paper presents a numerical approach to study of fluid flow characteristics and to predict performance of wind turbines. The numerical model is based on Finite-volume method (FVM) discretization of unsteady Reynolds-averaged Navier-Stokes (URANS) equations. The movement of turbine blades is modeled using moving mesh technique. The turbulence is modeled using commonly used turbulence models: Renormalization Group (RNG) k-${\varepsilon}$ turbulence model and the standard k-${\varepsilon}$ and k-${\omega}$ turbulence models. The model is validated with the experimental data over a large range of tip-speed to wind ratio (TSR) and blade pitch angles. In order to demonstrate the use of numerical method as a tool for designing wind turbines, two dimensional (2-D) and three-dimensional (3-D) simulations are carried out to study the flow through a small scale Darrieus type H-rotor Vertical Axis Wind Turbine (VAWT). The flows predictions are used to determine the performance of the turbine. The turbine consists of 3-symmetrical NACA0022 blades. A number of simulations are performed for a range of approaching angles and wind speeds. This numerical study highlights the concerns with the self-starting capabilities of the present VAWT turbine. However results also indicate that self-starting capabilities of the turbine can be increased when the mounted angle of attack of the blades is increased. The 2-D simulations using the presented model can successfully be used at preliminary stage of turbine design to compare performance of the turbine for different design and operating parameters, whereas 3-D studies are preferred for the final design.

Unrecorded fern species from Korean flora : Ctenitis maximowicziana, Dryopteris lunanensis and D. decipiens var. diplazioides (Dryopteridaceae) (한국산 미기록 양치식물 : 흰비늘고사리, 남도톱지네고사리, 애기지네고사리 (관중과))

  • Kim, Chul Hwan;Sun, Byung-Yun;Kim, Yong Bok
    • Korean Journal of Plant Taxonomy
    • /
    • v.34 no.1
    • /
    • pp.27-35
    • /
    • 2004
  • Three unrecorded fern species from the flora of Korea belonging to family Dryopteridaceae, Ctenitis maximowicziana, Dryopteris lunanensis, and D. dcipiens var. diplazioides, are found along the valley of Mt. Wolgak (alt. 275m) in Gwangju, Korea. C. maximawicziana is well distinguished from the rest of the species in the genus including C. sinii by the color and morphology of scales in basal part of petioles, shape of blades, and the presence of round-reniform shaped indusia. Dryopteris lunanensis is also well distinguished from its close relative, D. atrata, by the number of lateral pinnae, degree of division of first and/or second pinnules in lower pinnae of the blades, and distribution pattern of sori. Dryapteris decipiens var. diplazioides is distinguishable from type variety by degree of division in lower pinnae of the blades. In terms of morphology, var. diplazioides seems to be intermediate between a type variety and D. fuscipes.

Impact of spar-nacelle-blade coupling on the edgewise response of floating offshore wind turbines

  • Dinh, Van-Nguyen;Basu, Biswajit;Nielsen, Soren R.K.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.231-253
    • /
    • 2013
  • The impact of spar-nacelle-blade coupling on edgewise dynamic responses of spar-type floating wind turbines (S-FOWT) is investigated in this paper. Currently, this coupling is not considered explicitly by researchers. First of all, a coupled model of edgewise vibration of the S-FOWT considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar and mooring system, the hydrodynamic effects, the restoring moment and the buoyancy force is proposed. The aerodynamic loads are combined of a steady wind (including the wind shear) and turbulence. Each blade is modeled as a cantilever beam vibrating in its fundamental mode. The mooring cables are modeled using an extended quasi-static method. The hydrodynamic effects calculated by using Morison's equation and strip theory consist of added mass, fluid inertia and viscous drag forces. The random sea state is simulated by superimposing a number of linear regular waves. The model shows that the vibration of the blades, nacelle, tower, and spar are coupled in all degrees of freedom and in all inertial, dissipative and elastic components. An uncoupled model of the S-FOWT is then formulated in which the blades and the nacelle are not coupled with the spar vibration. A 5MW S-FOWT is analyzed by using the two proposed models. In the no-wave sea, the coupling is found to contribute to spar responses only. When the wave loading is considered, the coupling is significant for the responses of both the nacelle and the spar.