• Title/Summary/Keyword: Number line model

Search Result 510, Processing Time 0.024 seconds

Finite element modelling of self-supported transmission lines under tornado loading

  • Altalmas, A.;El Damatty, A.A.
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.473-495
    • /
    • 2014
  • Localized wind events, in the form of tornadoes and downbursts, are the main cause of the large number of failure incidents of electrical transmission line structures worldwide. In this study, a numerical model has been developed to study the behaviour of self-supported transmission lines under various tornado events. The tornado wind fields used were based on a full three-dimensional computational fluid dynamics analysis that was developed in an earlier study. A three-dimensional finite element model of an existing self-supported transmission line was developed. The tornado velocity wind fields were then used to predict the forces applied to the modelled transmission line system. A comprehensive parametric study was performed in order to assess the effects of the location of the tornado relative to the transmission line under F2 and F4 tornado wind fields. The study was used to identify critical tornado configurations which can be used when designing transmission line systems. The results were used to assess the sensitivity of the members' axial forces to changes in the location of the tornado relative to the transmission line. The results were then used to explain the behaviour of the transmission line when subjected to the identified critical tornado configurations.

Turbine Design for Turbo-compound System to Recover Exhaust Gas Energy Using 1-D Mean Line Flow Model (1-D Mean Line Flow Model을 이용한 엔진 배기에너지 회수를 위한 터보컴파운드 시스템용 터빈 설계)

  • Jang, Jinyoung;Yun, Jeong-Eui
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.74-81
    • /
    • 2016
  • The aim of this study was to find the initial design value of turbine blade for electrical type turbocompound system generating 10 kW. Turbocompound is one of the waste heat recovery system applying to internal combustion engine to recover exhaust gas energy that was about 30 % of total input energy. To design the turbine blade, 1-D mean line flow model was used. Exhaust gas temperature, pressure, flow rate and turbine rotating speed was fixed as primary boundary conditions. The velocity triangles was defined and used to determine the rotor inlet radius and width, the rotor outlet radius at shroud and radius at hub, the rotor flow angles and the number of blades.

Approximation of the Distribution Function for the Number of Innovation Activities Using a Mixture Model (기술혁신 횟수의 분포함수 추정 -혼합모형을 적용하여-)

  • Yoo Seung-Hoon;Park Doo-Ho
    • Journal of Korea Technology Innovation Society
    • /
    • v.8 no.3
    • /
    • pp.887-910
    • /
    • 2005
  • This paper attempts to approximate the distribution function for the number of innovation activities (NIA). To this end, the dataset of 2002 Korean Innovation Survey (KIS 2002) published by Science and Technology Policy Institute is used. To deal with zero NTI values given by a considerable number of firms in the KIS 2002 survey, a mixture model of distributions for NIA is applied. The NIA is specified as a mixture of two distributions, one with a point mass at zero and the other with full support on the positive half of the real line. The model was empirically verified for the KIS 2002 data. The mixture model can easily capture the common bimodality feature of the NIA distribution. In addition, when covariates were added to the mixture model, it was found that the probability that a firm has zero NIA significantly varies with some variables.

  • PDF

A Study on the Geodesic Line Algorithms for Cutting Pattern Generation of Membrane Structures (막 구조물의 재단도 생성을 위한 지오데식 라인 알고리즘에 관한 연구)

  • 배종효;한상을
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.357-364
    • /
    • 2000
  • The three main processes involved in the design of stressed membrane surface are surface form-finding, stress analysis and cutting pattern generation. The last process, cutting pattern generation, is considered as a very important procedure in the aspect of the practical design for the fabric membrane surface. In this paper, The cutting pattern generation technique using the geodesic line algorithms is first introduced. And the numerical examples resulting from this technique are presented. Cable elements are used for the approximating membrane surface and two kinds of model, square line and central line model, are used in pattern generation. Finally, a number of different cutting pattern generation for the same membrane surface is carried out and the numerical results are compared each

  • PDF

Simulated Annealing Neural Network Model for Sequencing in a Mixed Model Assembly Line (혼합형 조립라인의 투입순서결정을 위한 시뮬레이티드 어닐링 신경망모형)

  • Kim, Man-Soo;Kim, Dong-Mook
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.2
    • /
    • pp.251-260
    • /
    • 1998
  • This paper deals with a simulated annealing neural network model for determining sequences of models inputted into a mixed model assembly line. We first present a energy function fitting to our problem, next determine the value of the parameters of the energy function using convergence ratio and the number of searched feasible solution. Finally we compare our model NMS with the modified Thomopoulos model. The result of the comparison shows that NMS and Thomopoulos offer a similar output in the problems having good smoothness.

  • PDF

PREPROCESSING EFFECTS ON ON-LINE SSC MEASUREMENT OF FUJI APPLE BY NIR SPECTROSCOPY

  • Ryu, D.S.;Noh, S.H.;Hwang, I.G.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.560-568
    • /
    • 2000
  • The aims of this research were to investigate the preprocessing effect of spectrum data on prediction performance and to develop a robust model to predict SSC in intact apple. Spectrum data of 320 Fuji apples were measured with the on-line transmittance measurement system at the wavelength range of 550∼1100nm. Preprocess methods adopted for the tests were Savitzky Golay, MSC, SNV, first derivative and OSC. Several combinations of those methods were applied to the raw spectrum data set to investigate the relative effect of each method on the performance of the calibration model. PLS method was used to regress the preprocessed data set and the SSCs of samples, and the cross-validation was to select the optimal number of PLS factors. Smoothing and scattering corection were essential in increasing the prediction performance of PLS regression model and the OSC contributed to reduction of the number of PLS factors. The first derivative resulted in unfavorable effect on the prediction performance. MSC and SNV showed similar effect. A robust calibration model could be developed by the preprocessing combination of Savitzky Golay smoothing, MSC and OSC, which resulted in SEP= 0.507, bias=0.032 and R$^2$=0.8823.

  • PDF

VERIFICATION OF 2D INJECTION FLOWS WITH GCI AND NEAR-WALL GRID LINE SPACINGS (GCI와 벽면격자거리를 고려한 2차원 분사유동의 검증)

  • Won Su-Hee;Jeung In-Seuck;Choi Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.287-292
    • /
    • 2005
  • The flowfields generated by gaseous slot injection into a supersonic flow at a Mach number of 3.75 and a Reynolds number of $2.07{\times}10^7$ are simulated numerically. Fine-scale turbulence effects are represented by a two-equation(k-w SST model) closure model which includes $y^+$ effects on the turbulence model. Grid convergence index(GCI) is also considered to provide a measure of uncertainty of the grid convergence. Comparison is made with experimental data and other turbulence model in term of surface static pressure distributions, the length of the upstream separation region, and the penetration height. Results indicate that the k-w SST model correctly predicts mean surface pressure distribution and upstream separation length. However, it is also observed that the numerical simulation over predicts the pressure spike and penetration height compared with experimental data. All these results are taken within $1\%$ error band of grid convergence.

  • PDF

Parallel processing in structural reliability

  • Pellissetti, M.F.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.95-126
    • /
    • 2009
  • The present contribution addresses the parallelization of advanced simulation methods for structural reliability analysis, which have recently been developed for large-scale structures with a high number of uncertain parameters. In particular, the Line Sampling method and the Subset Simulation method are considered. The proposed parallel algorithms exploit the parallelism associated with the possibility to simultaneously perform independent FE analyses. For the Line Sampling method a parallelization scheme is proposed both for the actual sampling process, and for the statistical gradient estimation method used to identify the so-called important direction of the Line Sampling scheme. Two parallelization strategies are investigated for the Subset Simulation method: the first one consists in the embarrassingly parallel advancement of distinct Markov chains; in this case the speedup is bounded by the number of chains advanced simultaneously. The second parallel Subset Simulation algorithm utilizes the concept of speculative computing. Speedup measurements in context with the FE model of a multistory building (24,000 DOFs) show the reduction of the wall-clock time to a very viable amount (<10 minutes for Line Sampling and ${\approx}$ 1 hour for Subset Simulation). The measurements, conducted on clusters of multi-core nodes, also indicate a strong sensitivity of the parallel performance to the load level of the nodes, in terms of the number of simultaneously used cores. This performance degradation is related to memory bottlenecks during the modal analysis required during each FE analysis.

A Study on Shape and Height of Shipwaves

  • Gang, Song-Jin;Kim, Mi-Kum;Kim, Chang-Je
    • Journal of Navigation and Port Research
    • /
    • v.33 no.2
    • /
    • pp.105-110
    • /
    • 2009
  • Shipwaves am have harmful effects on ships working on the sea, in a harbour or navigational channel and caused beach erosion, seawall destruction. This study aims to investigate describe the characteristics of the wave pattern generated by an individual model ship tested at different velocities and hull forms for a given water depth and to investigate the variations at a given distance from the sailing line under the same conditions. As a result, the angles a's by model ship tests are smaller than those by real ship ones. Wave heights decreases with an increasing the mid-ship cross sectional area $A_s$. The maximum wave height and period increase rapidly in the subcritical speed, and beyond the critical speed the height and period decrease with increasing depth Froude number. And the period keeps constant with the distance from the sailing line.

A Study on Cutting Pattern Generation of Membrane Structures Using Spline Curves (스플라인 곡선을 이용한 막구조물의 재단도 작성에 관한 연구)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.109-119
    • /
    • 2012
  • For membrane structure, there are three main steps in design and construction, which are form finding, statistical load analysis, and cutting patterning. Unlike the first two stages, the step of cutting pattern involves the translation of a double-curved surface in 3D space into a 2D plane with minimal error. For economic reasons, the seam lines of generated cutting patterns rely greatly on the geodesic line. Generally, as searching regions of the seam line are plane elements in the step of shape analysis, the seam line is not a smooth curve, but an irregularly divided straight line. So, it is how we make an irregularly divided straight line a smooth curve that defines the quality of the pattern. Accordingly, in this paper, we analyzed interpolation schemes using spline, and apply these methods to cutting pattern generation on the curved surface. To generate the pattern, three types of spline functions were used, i.e., cubic spline function, B-spline, and least-square spline approximation, and simple model and the catenary-shaped membrane was adopted to examine the result of generation. The result of comparing the approximation curves by the number of elements and the number of extracted nodes of simple model revealed that the seam line for less number of extracted nodes with large number of elements were more efficient, and the least-square spline approximation provided smoother seam line than other methods.