• Title/Summary/Keyword: Number Field

Search Result 7,081, Processing Time 0.041 seconds

REAL QUADRATIC FUNCTION FIELDS OF MINIMAL TYPE

  • Byeon, Dongho;Keem, Jiae;Lee, Sangyoon
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.735-740
    • /
    • 2013
  • In this paper, we will introduce the notion of the real quadratic function fields of minimal type, which is a function field analogue to Kawamoto and Tomita's notion of real quadratic fields of minimal type. As number field cases, we will show that there are exactly 6 real quadratic function fields of class number one that are not of minimal type.

Optimization of the Number and Position of Far Field Sources in Using the Equivalent Source Method (등가음원법에서의 원거리음원의 위치와 개수의 최적화 연구)

  • 백광현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.743-750
    • /
    • 2003
  • The equivalent source method(ESM) is used for the calculation of the internal pressure field for an enclosure which can have arbitrary boundary conditions and nay include internal objects which scatter the sound field. The advantage of using ESM is that it requires relatively low computing cost and is easy to model the internal diffracting objects. Typical ESM modeling uses two groups of equivalent source positions. One group includes the first order images of the source inside the enclosure. The Positions of the other group are usually on a spherical surface some distance outside the enclosure. The normal velocity on the surfaces of the enclosure walls is evaluated at a larger number of positions than there are equivalent sources. The sum of the squared difference between this velocity and the expected is minimized by adjusting the strength of the equivalent sources. This study is on the optimal far field sources positions when using the equivalent source method. In general, the far field sources are evenly distributed on a surface of a virtual sphere which is centered at the enclosure with a sufficiently large radius. In this study. optimal far field source locations are searched using simulated annealing method for various radii of spheres where far field sources are located. Simulation results showed that optimally located sources with adequate distance away from the enclosure center gave better result than sources with even distribution even with a smaller number of far field sources.

Design of an Optical System for a Space Target Detection Camera

  • Zhang, Liu;Zhang, Jiakun;Lei, Jingwen;Xu, Yutong;Lv, Xueying
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.420-429
    • /
    • 2022
  • In this paper, the details and design process of an optical system for space target detection cameras are introduced. The whole system is divided into three structures. The first structure is a short-focus visible light system for rough detection in a large field of view. The field of view is 2°, the effective focal length is 1,125 mm, and the F-number is 3.83. The second structure is a telephoto visible light system for precise detection in a small field of view. The field of view is 1°, the effective focal length is 2,300 mm, and the F-number is 7.67. The third structure is an infrared light detection system. The field of view is 2°, the effective focal length is 390 mm, and the F-number is 1.3. The visible long-focus narrow field of view and visible short-focus wide field of view are switched through a turning mirror. Design results show that the modulation transfer functions of the three structures of the system are close to the diffraction limit. It can further be seen that the short-focus wide-field-of-view distortion is controlled within 0.1%, the long-focus narrow-field-of-view distortion within 0.5%, and the infrared subsystem distortion within 0.2%. The imaging effect is good and the purpose of the design is achieved.

Efficient Exponentiation in Extensions of Finite Fields without Fast Frobenius Mappings

  • Nogami, Yasuyuki;Kato, Hidehiro;Nekado, Kenta;Morikawa, Yoshitaka
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.818-825
    • /
    • 2008
  • This paper proposes an exponentiation method with Frobenius mappings. The main target is an exponentiation in an extension field. This idea can be applied for scalar multiplication of a rational point of an elliptic curve defined over an extension field. The proposed method is closely related to so-called interleaving exponentiation. Unlike interleaving exponentiation methods, it can carry out several exponentiations of the same base at once. This happens in some pairing-based applications. The efficiency of using Frobenius mappings for exponentiation in an extension field was well demonstrated by Avanzi and Mihailescu. Their exponentiation method efficiently decreases the number of multiplications by inversely using many Frobenius mappings. Compared to their method, although the number of multiplications needed for the proposed method increases about 20%, the number of Frobenius mappings becomes small. The proposed method is efficient for cases in which Frobenius mapping cannot be carried out quickly.

  • PDF

Transonic Magnetohydrodynamic Turbulence

  • LEE HYESOOK;RYU DONGSU;KIM JONGSOO;JONES T. W.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.321-323
    • /
    • 2001
  • Compressible, magnetohydrodynamic (MHD) turbulence in two dimension is studied through high-resolution, numerical simulations with the isothermal equation of state. First, hydrodynamic turbulence with Mach number $(M)_{rms}\;\~$1 is generated by enforcing a random force. Next, initial, uniform magnetic field of various strengths with Alfvenic Mach number Ma $\gg$ 1 is added. Then, the simulations are followed until MHD turbulence is fully developed. Such turbulence is expected to exist in a variety of astrophysical environments including clusters of galaxies. Although no dissipation is included explicitly in our simulations, truncation errors produce dissipation which induces numerical resistivity. It mimics a hyper-resistivity in our second-order accurate code. After saturation, the resulting flows are categorized as SF (strong field), WF (weak field), and VWF (very weak field) classes respectively, depending on the average magnetic field strength described with Alfvenic Mach number, $(Ma)_{rms}{\ge}1$, $(Ma)_{rms}{\~}1$, and $(Ma)_{rms}{\gg}1$. The characteristics of each class are discussed.

  • PDF

Estimation of Product Reliability with Incomplete Field Warranty Data (불완전한 사용현장 보증 데이터를 이용한 제품 신뢰도 추정)

  • Lim, Tae-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.4
    • /
    • pp.368-378
    • /
    • 2002
  • As more companies are equipped with data aquisition systems for their products, huge amount of field warranty data has been accumulated. We focus on the case when the field data for a given product comprise with the number of sales and the number of the first failures for each period. The number of censored items and their ages are assumed to be given. This type of data are incomplete in the sense that the age of a failed item is unknown. We construct a model for this type of data and propose an algorithm for nonparametric maximum likelihood estimation of the product reliability. Unlike the nonhomogeneous Poisson process(NHPP) model, our method can handle the data with censored items as well as those with small population. A few examples are investigated to characterize our model, and a real field warranty data set is analyzed by the method.

EFFECT OF MAGNETIC FIELD ON LONGITUDINAL FLUID VELOCITY OF INCOMPRESSIBLE DUSTY FLUID

  • N. JAGANNADHAM;B.K. RATH;D.K. DASH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.401-411
    • /
    • 2023
  • The effects of longitudinal velocity dusty fluid flow in a weak magnetic field are investigated in this paper. An external uniform magnetic field parallel to the flow of dusty fluid influences the flow of dusty fluid. Besides that, the problem under investigation is completely defined in terms of identifying parameters such as longitudinal velocity (u), Hartmann number (M), dust particle interactions β, stock resistance γ, Reynolds number (Re) and magnetic Reynolds number (Rm). While using suitable transformations of resemblance, The governing partial differential equations are transformed into a system of ordinary differential equations. The Hankel Transformation is used to solve these equations numerically. The effects of representing parameters on the fluid phase and particle phase velocity flow are investigated in this analysis. The magnitude of the fluid particle is reduced significantly. The result indicates the magnitude of the particle reduced significantly. Although some of our numerical solutions agree with some of the available results in the literature review, other results differs because of the effect of the introduced magnetic field.

Concurrent Modeling of Magnetic Field Parameters, Crystalline Structures, and Ferromagnetic Dynamic Critical Behavior Relationships: Mean-Field and Artificial Neural Network Projections

  • Laosiritaworn, Yongyut;Laosiritaworn, Wimalin
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.315-322
    • /
    • 2014
  • In this work, Artificial Neural Network (ANN) was used to model the dynamic behavior of ferromagnetic hysteresis derived from performing the mean-field analysis on the Ising model. The effect of field parameters and system structure (via coordination number) on dynamic critical points was elucidated. The Ising magnetization equation was drawn from mean-field picture where the steady hysteresis loops were extracted, and series of the dynamic critical points for constructing dynamic phase-diagram were depicted. From the dynamic critical points, the field parameters and the coordination number were treated as inputs whereas the dynamic critical temperature was considered as the output of the ANN. The input-output datasets were divided into training, validating and testing datasets. The number of neurons in hidden layer was varied in structuring ANN network with highest accuracy. The network was then used to predict dynamic critical points of the untrained input. The predicted and the targeted outputs were found to match well over an extensive range even for systems with different structures and field parameters. This therefore confirms the ANN capabilities and indicates the ANN ability in modeling the ferromagnetic dynamic hysteresis behavior for establishing the dynamic-phase-diagram.