• Title/Summary/Keyword: Nucleotide substitution

Search Result 107, Processing Time 0.027 seconds

Genetic Analysis of Ancient Human Bones Excavated in Sacheon Nuk-do and Gyeongsan Yimdang-dong, Korea (경산 임당동 및 사천 늑도 출토 인골의 유전자 분석)

  • Seo, Min-Seok;Lee, Kyu-Shik
    • 보존과학연구
    • /
    • s.25
    • /
    • pp.47-74
    • /
    • 2004
  • We investigated the nucleotide substitution and insertion polymorphism of the hypervariable region Ⅰ and Ⅱ in mt DNA by sequencing ancient DNA from 51 ancient bones and teeth excavated at Nuk-do and Yimdang-dong in Korea. It revealed 35 sequence types from the ancient Korean. Of these, different sequences were 34 sequences. There were 19 and 38 base substitutions in HVI and HVⅡ, respectively. Some substitutions were characteristic of East Asian populations as compared with data reported on Caucacianpopulations,16051, 16150, 16172, 16223 in region I and 73, 263 in region II were noted as polymorphic sites, respectively. These were distributed evenly along the control region, though the frequency of each site was variable. Nucleotide substitution rather than insertion and deletion was the prevalent pattern of variation. Insertion of cytosine between312 and 315 in region HVⅡ were detected up to 98% in 51 ancient bone samples. This sequence data represents a phylogenetic tree using NTI DNA Suite computer program. The phylogenetic tree showed that mt DNA sequences of Nuk-do bones were relative to west Siberian and Indonesian. The usefulness of mt DNA sequencing in ancient Korean population excavated atarchaeological sites is based on biological and historical evidence for origin and migration of ancient Korean.

  • PDF

Cloning and Sequence Analysis of the Full-length cDNA of Coxsackievirus B3 Isolated in Korea (한국에서 분리된 콕사키 바이러스 B3 cDNA의 클로닝 및 전체 염기서열 분석)

  • Chung, Yoon-Seok;Kim, Ki-Soon;Park, Jeong-Koo;Lee, Yoon-Sung;Shin, Soo-Youn;Cheon, Doo-Seong;Jee, Young-Mee;Kim, Moon-Bo;Na, Byoung-Kuk;Yoon, Jae-Deuk;Lee, Kwang-Ho;Song, Chul-Yong
    • The Journal of Korean Society of Virology
    • /
    • v.30 no.1
    • /
    • pp.71-81
    • /
    • 2000
  • We have determined and analyzed the full-length cDNA sequence of a coxsackievirus B3 (CVB3) Korean isolate (CVB3-Korea/97) which has been known as a general human pathogen. The whole genome contains 7,400 nucleotides and has a single large open reading frame with 6,555 nucleotides that encodes a potential polyprotein precursor of 2,185 amino acids. The genome also contains a 5' non-coding region (NCR) of 741 bases and a 3' NCR of 104 bases followed by poly(A) tail. Sequence homologies of nucleotides and deduced amino acids between the CVB3-Korea/97 strain and the prototype (Nancy strain) were 81.7% and 91.5%, respectively. The genes encoding the functional proteins including viral protease and RNA dependent RNA polymerase showed higher homology than those encoding the structural proteins. We have further analyzed the sequences of 5' NCR, VP1 and VP2 of CVB3-Korea/97, which are known as cardiovirulent determining factors at the nucleotide and amino acid levels. Although the CVB 3-Korea/97 strain was isolated from an aseptic meningitis patient without cardiomyopathy, its 234th nucleotide and 165th amino acid were uracil and Asn as same as those of other cardiovirulent strains one. However, the 155th amino acid of VP1, which closely associated with cardiovirulence, was replaced with $Arg^{155}$ by single nucleotide substitution from $A^{2916}$ to $T^{2916}$. Moreover, additional amino acid substitutions were observed in the flanking region of $Asp^{155}$. Taken together, amino acid(s) substitution in VP1 may playa critical role in determining cardiovirulence of the CVB3-Korea/97 strain rather than individual nucleotide replacements in the 5' NCR and/or an amino acid substitution in VP2.

  • PDF

Effect of Butyrophilin Gene Polymorphism on Milk Quality Traits in Crossbred Cattle

  • Bhattacharya, T.K.;Misra, S.S.;Sheikh, Feroz D.;Sukla, Soumi;Kumar, Pushpendra;Sharma, Arjava
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.922-926
    • /
    • 2006
  • A genetic polymorphism study on butyrophilin gene was carried out to explore variability of this gene and to estimate effects of such variability on milk quality traits in crossbred cattle. Polymorphism was unraveled by conducting Hae III PCR-RFLP of this gene. Three genotypes such as AA, BB and AB and two alleles namely A and B were observed in crossbred population. The frequencies of genotypes and alleles were 0.78, 0.17 and 0.04 for AA, AB and BB genotypes, respectively, and 0.87 and 0.13 for A and B alleles, respectively. The nucleotides, which have been substituted from allele A to B, were observed as C to G ($71^{st}$ nucleotide), C to T ($86^{th}$ nucleotide), A to T ($217^{th}$ nucleotide), G to A ($258^{th}$ nucleotide), A to C ($371^{st}$ nucleotide) and C to T ($377^{th}$ nucleotide). The nucleotide substitutions at $71^{st}$, $86^{th}$ and $377^{th}$ position of the fragment were found as silent mutations whereas nucleotide changes at $217^{th}$, $258^{th}$ and $371^{st}$ positions were detected as substitution of amino acid lysine with arginine, valine with isoleucine, and leucine with proline from allele A to B. The genotypes had significant effects ($p{\leq}0.05$) on total milk solid%, fat%, SNF%, while showing nonsignificant impact on total protein%. AA genotype produced highest average yield for all the traits.

Nucleotide Sequences of β-lactoglobulin Gene 5'Flanking Region in Korean Native Goat (한국재래산양 β-lactoglobulin 유전자 5'flanking 영역의 염기서열 분석)

  • Ryoo, Seung-Heui;Han, Sung-Wook;Seo, Kil-Woong;Sang, Byung-Chan
    • Korean Journal of Agricultural Science
    • /
    • v.28 no.2
    • /
    • pp.78-84
    • /
    • 2001
  • This study was analyzed by PCR technique with specific primer in order to investigate the characteristics of ${\beta}$-lactoglobulin (${\beta}$-LG) gene 5'flanking region in Korean native goat. This work confirmed amplified product of 1,077 bp fragments obtained from the amplification of ${\beta}$-LG promoter from genomic DNA using PCR in Korean native goat. The nucleotide sequence of ${\beta}$-LG gene 5'flanking region in Korean native goat as compared with that of sheep ${\beta}$-LG were different at 46 base of 897 nucleotides, and showed high homology as about 94.9% each breed. Especially we confirmed that the difference of nucleotide sequences between Korean native goat and sheep were consisted of $T{\rightarrow}C$ substitution and $C{\rightarrow}T$ substitution reversely. As a consequences, the sequences of ${\beta}$-LG gene 5'flanking region showed a high homology between Korean native goat and sheep. Furthermore we should be studied that relationships between the control of gene expression and nucleotide sequences of transcription factor in Korean native goat.

  • PDF

Variation of nuclear and mitochondrial DNAs in Korean and Chinese isolates of Clonorchis sinensis

  • Lee, Soo-Ung;Huh, Sun
    • Parasites, Hosts and Diseases
    • /
    • v.42 no.3
    • /
    • pp.145-148
    • /
    • 2004
  • We compared the DNA sequence difference of isolates of Clonorchis sinensis from one Korean (Kimhae) and two Chinese areas (Guangxi and Shenyang), The sequences of nuclear rDNA (18S, internal transcribed spacer 1 and 2: ITS1 and ITS2) and mitochondrial DNA (cytochrome c oxidase subunit 1: cox1) were compared. A very few intraspecific nucleotide substitution of the 18S, ITS1, ITS2 and cox1 was found among three isolates of C. sinensis and a few nucleotide insertion and deletion of ITS1 were detected. The 18S, ITS1, ITS2 and cox1 sequences were highly conserved among three isolates. These findings indicated that the Korean and two Chinese isolates are similar at the DNA sequence level.

Computational analysis of SARS-CoV-2, SARS-CoV, and MERS-CoV genome using MEGA

  • Sohpal, Vipan Kumar
    • Genomics & Informatics
    • /
    • v.18 no.3
    • /
    • pp.30.1-30.7
    • /
    • 2020
  • The novel coronavirus pandemic that has originated from China and spread throughout the world in three months. Genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) predecessor, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) play an important role in understanding the concept of genetic variation. In this paper, the genomic data accessed from National Center for Biotechnology Information (NCBI) through Molecular Evolutionary Genetic Analysis (MEGA) for statistical analysis. Firstly, the Bayesian information criterion (BIC) and Akaike information criterion (AICc) are used to evaluate the best substitution pattern. Secondly, the maximum likelihood method used to estimate of transition/transversions (R) through Kimura-2, Tamura-3, Hasegawa-Kishino-Yano, and Tamura-Nei nucleotide substitutions model. Thirdly and finally nucleotide frequencies computed based on genomic data of NCBI. The results indicate that general times reversible model has the lowest BIC and AICc score 347,394 and 347,287, respectively. The transition/transversions bias for nucleotide substitutions models varies from 0.56 to 0.59 in MEGA output. The average nitrogenous bases frequency of U, C, A, and G are 31.74, 19.48, 28.04, and 20.74, respectively in percentages. Overall the genomic data analysis of SARS-CoV-2, SARS-CoV, and MERS-CoV highlights the close genetic relationship.

Rationally designed siRNAs without miRNA-like off-target repression

  • Seok, Heeyoung;Jang, Eun-Sook;Chi, Sung Wook
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.135-136
    • /
    • 2016
  • Small interfering RNAs (siRNAs) have been developed to intentionally repress a specific gene expression by directing RNA-induced silencing complex (RISC), mimicking the endogenous gene silencer, microRNAs (miRNAs). Although siRNA is designed to be perfectly complementary to an intended target mRNA, it also suppresses hundreds of off-targets by the way that miRNAs recognize targets. Until now, there is no efficient way to avoid such off-target repression, although the mode of miRNA-like interaction has been proposed. Rationally based on the model called "transitional nucleation" which pre-requires base-pairs from position 2 to the pivot (position 6) with targets, we developed a simple chemical modification which completely eliminates miRNA-like off-target repression (0%), achieved by substituting a nucleotide in pivot with abasic spacers (dSpacer or C3 spacer), which potentially destabilize the transitional nucleation. Furthermore, by alleviating steric hindrance in the complex with Argonaute (Ago), abasic pivot substitution also preserves near-perfect on-target activity (∼80-100%). Abasic pivot substitution offers a general means of harnessing target specificity of siRNAs to experimental and clinical applications where misleading and deleterious phenotypes from off-target repression must be considered.

Comparative study: nonsynonymous and synonymous substitution of SARS-CoV-2, SARS-CoV, and MERS-CoV genome

  • Sohpal, Vipan Kumar
    • Genomics & Informatics
    • /
    • v.19 no.2
    • /
    • pp.15.1-15.7
    • /
    • 2021
  • The direction of evolution can estimate based on the variation among nonsynonymous to synonymous substitution. The simulative study investigated the nucleotide sequence of closely related strains of respiratory syndrome viruses, codon-by-codon with maximum likelihood analysis, z selection, and the divergence time. The simulated results, dN/dS > 1 signify that an entire substitution model tends towards the hypothesis's positive evolution. The effect of transition/transversion proportion, Z-test of selection, and the evolution associated with these respiratory syndromes, are also analyzed. Z-test of selection for neutral and positive evolution indicates lower to positive values of dN-dS (0.012, 0.019) due to multiple substitutions in a short span. Modified Nei-Gojobori (P) statistical technique results also favor multiple substitutions with the transition/transversion rate from 1 to 7. The divergence time analysis also supports the result of dN/dS and imparts substantiating proof of evolution. Results conclude that a positive evolution model, higher dN-dS, and transition/transversion ratio significantly analyzes the evolution trend of severe acute respiratory syndrome coronavirus 2, severe acute respiratory syndrome coronavirus, and Middle East respiratory syndrome coronavirus.

Nucleotide Sequence Analysis of the Hemagglutinin-Neuraminidase Gene of Urabe AM-9 Strain (Urabe AM-9 볼거리 백신주의 Hemagglutinin-Neuraminidase 유전자 염기서열 분석)

  • Lee, Joo Yeon;Kim, Jee Hee;Lee, Jin Soo;Park, Ji Ho;Sohn, Young Mo
    • Pediatric Infection and Vaccine
    • /
    • v.7 no.1
    • /
    • pp.83-93
    • /
    • 2000
  • Purpose : Urabe AM-9 strain was known to be associated with increased aseptic meningitis. The reason for high incidence of vaccine-associated meningitis was known that nucleotide(nt) substituted form G to A at position 1081 of the hemagglutinin-neuraminidase(HN) gene and therefore, glutamic acid changed to lysine at amino acid 335. We assessed by comparing nt sequence of the HN gene form Urabe AM-9 strain with wild strain and documented the correlation between nt substitution and vaccine-associated meningitis. Methods : Two lots of Urabe AM-9 vaccine distributed in Korea and mumps wild strains isolated from 1998 through 1999 were analysed. Analysis was made by nt sequencing following amplification of HN gene by RT-PCR. Results : Nucleotide substitution at position 343, 1476, 1570 was not found in both Urabe AM-9 vaccines and wild strains. But analysis of vaccine strains and wild strains isolated from patients revealed substitution from G to A at nt 1081 of the HN gene. Therefore, it encodes lysine instead of glutamic acid at amino acid 335. There was no mixture from of G and A at nt 1081. Nt at 1470 of one lot of Urabe AM-9 vaccines changed from C to A after Vero cell passage. Nt at 1727 of vaccines and wild strains was substituted A to G, so it encodes glycine instead of aspartic acid. Conclusion : Nucleotide analysis of HN gene revealed that nt 1081 of Urabe AM-9 vaccines and wild strains had wild type AAA($Lys^{335}$) instead of variant type GAA($Glu^{335}$). The results of this study suggest that there was a probability of vaccine-associated meningitis due to Urabe AM-9 in Korea before. But incidence of actual side effect was not evaluated because there was no reporting system in Korea.

  • PDF

The Base Sequence of ITS and Genetic Variation in Sarcodon Aspratus (능이버섯의 ITS염기서열과 유전적 변이)

  • Kim Jong Bong
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.963-966
    • /
    • 2004
  • The sequence of ITS (partial 16S ribosomal DNA, complete ITS1, 5.8S ribosomal DNA and ITS2, and partial 28S ribosomal DNA) was analysed by PCR and autosequencing in Sarcodon aspratus. The ITS lenght of S. aspratus was 716 base pair. As this sequence compared with other reports on S. aspratus (ace No AF335110), the sequence variation based on nucleotide deletion and substitution was $1.8\%$. This nucleotide variation rate in same species was very higher than in other species. Also, the sequence varitation rates between this S. aspratus and S. imbricatus, and S. squamus were $8\%\;and\;10\%$, respectively. This results suggested that the high sequence variation of S. aspratus might be caused specific host and inhabitat environment which limited gene flow.