• Title/Summary/Keyword: Nucleotide sequencing

Search Result 638, Processing Time 0.035 seconds

Estimation of the Genetic Substitution Rate of Hanwoo and Holstein Cattle Using Whole Genome Sequencing Data

  • Lee, Young-Sup;Shin, Donghyun
    • Genomics & Informatics
    • /
    • v.16 no.1
    • /
    • pp.14-20
    • /
    • 2018
  • Despite the importance of mutation rate, some difficulties exist in estimating it. Next-generation sequencing (NGS) data yields large numbers of single-nucleotide polymorphisms, which can make it feasible to estimate substitution rates. The genetic substitution rates of Hanwoo and Holstein cattle were estimated using NGS data. Our main findings was to calculate the gene's substitution rates. Through estimation of genetic substitution rates, we found: diving region of altered substitution density exists. This region may indicate a boundary between protected and unprotected genes. The protected region is mainly associated with the gene ontology terms of regulatory genes. The genes that distinguish Hanwoo from Holstein in terms of substitution rate predominantly have gene ontology terms related to blood and circulatory system. This might imply that Hanwoo and Holstein evolved with dissimilar mutation rates and processes after domestication. The difference in meat quality between Hanwoo and Holstein could originate from differential evolution of the genes related to these blood and circulatory system ontology terms.

Practical considerations for the study of the oral microbiome

  • Yu, Yeuni;Lee, Seo-young;Na, Hee Sam
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.77-83
    • /
    • 2020
  • In the oral cavity, complex microbial community is shaped by various host and environmental factors. Extensive literature describing the oral microbiome in the context of oral health and disease is available. Advances in DNA sequencing technologies and data analysis have drastically improved the analysis of the oral microbiome. For microbiome study, bacterial 16S ribosomal RNA gene amplification and sequencing is often employed owing to the cost-effective and fast nature of the method. In this review, practical considerations for performing a microbiome study, including experimental design, molecular analysis technology, and general data analysis, will be discussed.

Analyses of alternative polyadenylation: from old school biochemistry to high-throughput technologies

  • Yeh, Hsin-Sung;Zhang, Wei;Yong, Jeongsik
    • BMB Reports
    • /
    • v.50 no.4
    • /
    • pp.201-207
    • /
    • 2017
  • Alternations in usage of polyadenylation sites during transcription termination yield transcript isoforms from a gene. Recent findings of transcriptome-wide alternative polyadenylation (APA) as a molecular response to changes in biology position APA not only as a molecular event of early transcriptional termination but also as a cellular regulatory step affecting various biological pathways. With the development of high-throughput profiling technologies at a single nucleotide level and their applications targeted to the 3'-end of mRNAs, dynamics in the landscape of mRNA 3'-end is measureable at a global scale. In this review, methods and technologies that have been adopted to study APA events are discussed. In addition, various bioinformatics algorithms for APA isoform analysis using publicly available RNA-seq datasets are introduced.

Exonic copy number variations in rare genetic disorders

  • Man Jin Kim
    • Journal of Genetic Medicine
    • /
    • v.20 no.2
    • /
    • pp.46-51
    • /
    • 2023
  • Exonic copy number variation (CNV), involving deletions and duplications at the gene's exon level, presents challenges in detection due to their variable impact on gene function. The study delves into the complexities of identifying large CNVs and investigates less familiar but recurrent exonic CNVs, notably enriched in East Asian populations. Examining specific cases like DRC1, STX16, LAMA2, and CFTR highlights the clinical implications and prevalence of exonic CNVs in diverse populations. The review addresses diagnostic challenges, particularly for single exon alterations, advocating for a strategic, multi-method approach. Diagnostic methods, including multiplex ligation-dependent probe amplification, droplet digital PCR, and CNV screening using next-generation sequencing data, are discussed, with whole genome sequencing emerging as a powerful tool. The study underscores the crucial role of ethnic considerations in understanding specific CNV prevalence and ongoing efforts to unravel subtle variations. The ultimate goal is to advance rare disease diagnosis and treatment through ethnically-specific therapeutic interventions.

Genetic Analysis of Ancient Human Bones Excavated in Sacheon Nuk-do and Gyeongsan Yimdang-dong, Korea (경산 임당동 및 사천 늑도 출토 인골의 유전자 분석)

  • Seo, Min-Seok;Lee, Kyu-Shik
    • 보존과학연구
    • /
    • s.25
    • /
    • pp.47-74
    • /
    • 2004
  • We investigated the nucleotide substitution and insertion polymorphism of the hypervariable region Ⅰ and Ⅱ in mt DNA by sequencing ancient DNA from 51 ancient bones and teeth excavated at Nuk-do and Yimdang-dong in Korea. It revealed 35 sequence types from the ancient Korean. Of these, different sequences were 34 sequences. There were 19 and 38 base substitutions in HVI and HVⅡ, respectively. Some substitutions were characteristic of East Asian populations as compared with data reported on Caucacianpopulations,16051, 16150, 16172, 16223 in region I and 73, 263 in region II were noted as polymorphic sites, respectively. These were distributed evenly along the control region, though the frequency of each site was variable. Nucleotide substitution rather than insertion and deletion was the prevalent pattern of variation. Insertion of cytosine between312 and 315 in region HVⅡ were detected up to 98% in 51 ancient bone samples. This sequence data represents a phylogenetic tree using NTI DNA Suite computer program. The phylogenetic tree showed that mt DNA sequences of Nuk-do bones were relative to west Siberian and Indonesian. The usefulness of mt DNA sequencing in ancient Korean population excavated atarchaeological sites is based on biological and historical evidence for origin and migration of ancient Korean.

  • PDF

Distribution of Genetic Variants in Korean Soybeans

  • Song, Kitae;Kim, Jeong Hoon;Yoon, Gi Yong;Kim, Hyo Chul;Shin, Seungho;Yim, Won Cheol;Kim, Kyung-Hee;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.2
    • /
    • pp.224-230
    • /
    • 2015
  • Next generation sequencing technologies provide opportunities to reveal the genetic variants and differentially expressedgenes. The genetic variants are closely relevance to understanding of genes and phenotypic differences related to agronomic characteristics among cultivars. In this study, we conducted RNA-seq using two Korean soybean accessions, including Daewon and Hwangkeum, by using next generation sequencing against Williams 82 genome as reference. A number of variants such assingle nucleotide variants (SNV), multiple nucleotide variants (MNV), insertion/deletion (InDel) and replacement, was 34,411 and 55,544 in Daewon and Hwangkeum, respectively. Among these variants, 9,611 nonsynonymous variants were detected within 4,290 genes in Daewon and 13,225 non-synonymous variants were located on 5,672 genes in Hwangkeum. The distribution of nonsynonymous variants and expression values of genes can serve as invaluable resource for genotyping and study of traits within genes for soybean improvements.

One Step Cloning of Defined DNA Fragments from Large Genomic Clones

  • Scholz, Christian;Doderlein, Gabriele;Simon, Horst H.
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.464-467
    • /
    • 2006
  • Recently, the nucleotide sequences of entire genomes became available. This information combined with older sequencing data discloses the exact chromosomal location of millions of nucleotide markers stored in the databases at NCBI, EMBO or DDBJ. Despite having resolved the intron/exon structures of all described genes within these genomes with a stroke of a pen, the sequencing data opens up other interesting possibilities. For example, the genomic mapping of the end sequences of the human, murine and rat BAC libraries generated at The Institute for Genomic Research (TIGR), reveals now the entire encompassed sequence of the inserts for more than a million of these clones. Since these clones are individually stored, they are now an invaluable source for experiments which depend on genomic DNA. Isolation of smaller fragments from such clones with standard methods is a time consuming process. We describe here a reliable one-step cloning technique to obtain a DNA fragment with a defined size and sequence from larger genomic clones in less than 48 hours using a standard vector with a multiple cloning site, and common restriction enzymes and equipment. The only prerequisites are the sequences of ends of the insert and of the underlying genome.

Studies on the Adenosine Deaminase Gene from Nocardioides sp. J-326TK (Nocardioides sp. J-326TK의 Adenosine Deaminase Gene에 관한 연구)

  • 전홍기;백형석;정춘식
    • Journal of Life Science
    • /
    • v.8 no.6
    • /
    • pp.673-680
    • /
    • 1998
  • Adenosine deaminase gene from Nocardioides sp. J-326TK was cloned by polymerase chain reaction using primers (PI, PII and PIII) constructed from the highly conserved amino acid sequences among Escherichia coli, mouse and human. A PCR product of about 800bp, as expected from the sequence of E. coli adenosine deaminase gene, was obtained from Nocardioides sp. J-326TK chromosomal DNA double-digested with EcoRI and Pst I. DNA sequencing of the PCR product after cloning into pT7Blue T-vector shows 99.5% and 98.9% homologies in nucleotide and amino acid sequences, respectively, with the E. coli adenosine deaminase whereas 59.5% and 46.8% homologies with the human adenosine deaminase, indicating the evolutionarily relationship of these organisms.

  • PDF